初三年级数学上册期中测试题

初三年级数学上册期中测试题

时间:2019-01-12 数学试题

  一、填空题(每题2分,共20分)

  1.方程 x(x-3)=5(x-3)的根是_______.

  2.下列方程中,是关于x的一元二次方程的有________.

  (1)2y2+y-1=0;(2)x(2x-1)=2x2;(3) -2x=1;

  (4)ax2+bx+c=0;(5) x2=0.

  3.把方程(1-2x)(1+2x)=2x2-1化为一元二次方程的一般形式为________.

  4.如果 - -8=0,则 的值是________.

  5.关于x的方程(m2-1)x2+(m-1)x+2m-1=0是一元二次方程的条件是________.

  6.关于x的一元二次方程x2-x-3m=0,有两个不相等的实数根,则m的取值范围是定______________.

  7.x2-5│x│+4=0的所有实数根的和是________.

  8.方程x4-5x2+6=0,设y=x2,则原方程变形为___________________,原方程的根为________.

  9.以-1为一根的一元二次方程可为_____________________(写一个即可).

  10.代数式x2+8x+5的最小值是_________.

  二、选择题(每题3分,共18分)

  11.若方程(a-b)x2+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有( ).

  A.a=b=c B.一根为1C.一根为-1D.以上都不对

  12.一元二次方程x2-4=0的解是( )

  A.x1=2,x2=-2B.x=-2C.x=2D. x1=2,x2=0

  13.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为( ).

  A.-5或1 B.1 C.5 D.5或-1

  14.已知方程x2+px+q=0的两个根分别是2和-3,则x2-px+q可分解为( ).

  A.(x+2)(x+3) B.(x-2)(x-3)

  C.(x-2)(x+3) D.(x+2)(x-3)

  15.已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为( ).

  A.1B.2 C.3 D.4

  16.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,则这个三角形的周长是( ).

  A.8B.8或10 C.10D.8和10

  三、用适当的方法解方程(每小题4分,共16分)

  17.(1)2(x+2)2-8=0; (2)x(x-3)=x;

  (3) x2=6x- ; (4)(x+3)2+3(x+3)-4=0.

  四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)

  18.如果x2-10x+y2-16y+89=0,求 的值.

  19.阅读下面的材料,回答问题:

  解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:

  设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.

  当y=1时,x2=1,∴x=±1;

  当y=4时,x2=4,∴x=±2;

  ∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.

  (1)在由原方程得到方程①的过程中,利用___________法达到________的目的,体现了数学的转化思想.

  (2)解方程(x2+x)2-4(x2+x)-12=0.

  20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.

  (1) 填写统计表:

  2000~2003年丽水市全社会用电量统计表:

  年份 2000 2001 2002 2003

  全社会用电量

  (单位:亿kW?h) 13.33

  (2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).

  21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.

  (1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?

  (2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.

  22.设a,b,c是△ABC的三条边,关于x的方程 x2+ x+c- a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.

  (1)试判断△ABC的形状.

  (2)若a,b为方程x2+mx-3m=0的两个根,求m的值.

  23.已知关于x的方程a2x2+(2a-1)x+1=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.

  解:(1)根据题意,得△=(2a-1)2-4a20,解得a .

  ∴当a0时,方程有两个不相等的实数根.

  (2)存在,如果方程的两个实数根x1,x2互为相反数,则x1+x2=-(2a—1)/a.a=0 ①,

  解得a= ,经检验,a= 是方程①的根.

  ∴当a= 时,方程的两个实数根x1与x2互为相反数.

  上述解答过程是否有错误?如果有,请指出错误之处,并解答.

  参考答案:

  1.x1=3,x2=10

  2.(5) 点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.

  3.6x2-2=0

  4.4 -2 点拨:把 看做一个整体.

  5.m≠±1

  6.m-点拨:理解定义是关键.

  7.0 点拨:绝对值方程的解法要掌握分类讨论的思想.

  8.y2-5y+6=0 x1= ,x2=- ,x3= ,x4=-

  9.x2-x=0(答案不唯一)

  10.-27

  11.D 点拨:满足一元二次方程的条件是二次项系数不为0.

  12.A 点拨:注意正负值

  13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.

  14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.

  15.D 点拨:本题的关键是整体思想的运用.

  16.C 点拨:本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.

  17.(1)整理得(x+2)2=4,

  即(x+2)=±2,

  ∴x1=0,x2=-4

  (2)x(x-3)-x=0,

  x(x-3-1)=0,

  x(x-4)=0,

  ∴x1=0,x2=4.

  (3)整理得 x2+ -6x=0,

  x2-2 x+1=0,

  由求根公式得x1= + ,x2= - .

  (4)设x+3=y,原式可变为y2+3y-4=0,

  解得y1=-4,y2=1,

  即x+3=-4,x=-7.

  由x+3=1,得x=-2.

  ∴原方程的解为x1=-7,x2=-2.

  18.由已知x2-10x+y2-16y+89=0,

  得(x-5)2+(y-8)2=0,

  ∴x=5,y=8,∴ = .

  19.(1)换元 降次

  (2)设x2+x=y,原方程可化为y2-4y-12=0,

  解得y1=6,y2=-2.

  由x2+x=6,得x1=-3,x2=2.

  由x2+x=-2,得方程x2+x+2=0,

  b2-4ac=1-4×2=-70,此时方程无解.

  所以原方程的解为x1=-3,x2=2.

  20.(1)

  年份 2000 2001 2002 2003

  全社会用电量

  (单位:亿kW?h) 13.33 14.73 17.05 21.92

  (2)设2001年至2003年平均每年增长率为x,

  则2001年用电量为14.73亿kW?h,

  2002年为14.73(1+x)亿kW?h,

  2003年为14.73(1+x)2亿kW?h.

  则可列方程:14.73(1+x)2=21.92,1+x=±1.22,

  ∴x1=0.22=22%,x2=-2.22(舍去).

  则2001~2003年年平均增长率的百分率为22%.

  21.(1)设每件应降价x元,由题意可列方程为(40-x)?(30+2x)=1200,

  解得x1=0,x2=25,

  当x=0时,能卖出30件;

  当x=25时,能卖出80件.

  根据题意,x=25时能卖出80件,符合题意.

  故每件衬衫应降价25元.

  (2)设商场每天盈利为W元.

  W=(40-x)(30+2x)=-2x2+50x+1200=-2(x2-25x)+1200=-2(x-12.5)2+1512.5

  当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.

  22.∵ x2+ x+c- a=0有两个相等的实数根,

  ∴判别式=( )2-4× (c- a)=0,

  整理得a+b-2c=0①,

  又∵3cx+2b=2a的根为x=0,

  ∴a=b②.

  把②代入①得a=c,

  ∴a=b=c,∴△ABC为等边三角形.

  (2)a,b是方程x2+mx-3m=0的两个根,

  所以m2-4×(-3m)=0,即m2+12m=0,

  ∴m1=0,m2=-12.

  当m=0时,原方程的解为x=0(不符合题意,舍去),

  ∴m=12.

  23.上述解答有错误.

  (1)若方程有两个不相等实数根,则方程首先满足是一元二次方程,

  ∴a2≠0且满足(2a-1)2-4a20,∴a 且a≠0.

  (2)a不可能等于 .

  ∵(1)中求得方程有两个不相等实数根,同时a的取值范围是a 且a≠0,

  而a=(不符合题意)

  所以不存在这样的a值,使方程的两个实数根互为相反数.

大学网

关键词:

数学试题