高一数学教学计划精选15篇
日子如同白驹过隙,又迎来了一个全新的起点,立即行动起来写一份计划吧。计划到底怎么拟定才合适呢?以下是小编帮大家整理的高一数学教学计划,欢迎大家借鉴与参考,希望对大家有所帮助。

高一数学教学计划1
一、教学分析
1、分析教材
本章教材整体主要分成三大部分:
(1)、圆的标准方程与一般方程;
(2)、直线与圆、圆与圆的位置关系;
(3)、空间直角坐标系以及空间两点间的距离公式。
圆的方程是在前一章直线方程基础上引入的新的曲线方程,更进一步要求“数与形”结合。所以学习有关圆的方程时,仍仍然沿用直线方程中使用的坐标法,继续运用坐标法研究直线与圆、圆与圆的位置关系等几何问题。此外还要学习空间直角坐标系的有关知识,以便为今后用坐标法研究空间几何对象奠定基础。这些知识是进一步学习圆锥曲线方程、导数和积分的基础。
2、分析学生
高中一年级的学生还没有建立起比较好的数形结合的思想,前面学习过直线知识,只是使学生有了用坐标法研究问题的基本思路,通过圆的概念的引入及其现实生活中圆的例子,启发学生学习的兴趣及研究问题的方法,培养学生分析探索问题的能力,熟练的掌握解决解析几何问题的方法-坐标法,渗透数形结合的思想研究问题时抓住问题的本质,研究细致思考,规范得出解答,体现运动变化,对立统一的思想
3、教学重点与难点
重点:圆的标准方程与一般方程;利用直线与圆的方程判断直线与圆、圆与圆的位置关系;空间直角坐标系的基本认识。
难点:直线与圆的方程的应用;会求解简单的.直线与圆的相关曲线的方程;建立空间直角坐标系。
二、教学目标
1、掌握圆的定义和圆标准方程、一般方程的概念;能根据圆的方程求圆心和半径,初步掌握求圆的方程的方法。
2、掌握直线与圆的位置关系的判定。
3、在进一步培养学生类比、数形结合、分类讨论和化归的数学思想方法的过程中,提高学生学习能力。
4、培养学生科学探索精神、审美观和理论联系实际思想。
三、教学策略
1、教学模式
本节内容是运用“问题解决”课堂教学模式的一次尝试,采用探究、讨论的
教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学基本知识和基本能力,培养积极探索和团结协作的科学精神。
2、教学方法与手段--充分利用信息技术,合理整合课程资源
采用探究、讨论的教学方法,通过问题激发学生求知欲采用多媒体技术,目的在于充分利用其优良的传播功能,大容量信息的呈现和生动形象的演示(尤其是动画效果)对提高学生学习兴趣、激活学生思维、加深概念理解有积极作用。制作中,采用交互技术,使课件的机动性得到加强。
四、对内容安排的说明
本章分三部分:圆的标准方程与一般方程;直线与圆、圆与圆的位置关系;空间直角坐标系。
1、建立圆的方程是本节的主要内容之一。根据圆的几何特征(主要是动点与定点间距离恒定)建立适当的坐标系,再根据曲线上的点所满足的几何条件,求出点的坐标所满足的曲线方程。
通过研究方程来研究曲线的性质是解析几何的另一个主要内容,这就是解析几何通过代数方法研究几何图形的特点,也就是坐标法。始终强调曲线方程与曲线图像之间的一一对应。这一思想应该贯穿于整个圆的教学。
2.通过方程,研究直线与圆、圆与圆的位置关系是本章的主要内容之一。判断直线与圆、圆与圆的位置关系可以从两个方面着手:
(1)。两条曲线有无公共点,等价于由它们方程联立的方程组有无实数解。方程组有几组实数解,这两条曲线就有几个公共点;方程组没有实数解,这两条曲线就没有公共点。
(2)。运用平面几何知识,把直线与圆、圆与圆位置关系的结论转化为相应的代数结论。
3、坐标法是研究几何问题的重要方法,在教学过程中,应该始终贯穿坐标法这一重要思想,不怕重复;通过坐标系,把点和坐标、曲线和方程联系起来,实现形和数的统一。
用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果翻译成相应的几何结论。这就是用坐标法解决平面几何问题的“三步曲”:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:把代数运算结果翻译成几何结论。
五、教学评价
㈠过程性评价
1、教学过程中,教师的讲解和学生的练习紧扣教学目标,内容深浅要分层次,设计的问题要照顾好、中、差。
2、对于方程的推导运用的方法,学生理解起来难度较大,主要采用让学生理解的基础上进行检测反馈
㈡终结性评价
1、课程内容全部结束后,让学生分组交流、讨论后,选代表谈收获、体会和感想。
2、留课后作业(扣教学目标、分类型、分层次,落实学生为主体),让学生认真理解和巩固,了解圆的标准方程和一般方程,以及直线与圆位置关系,做完课后习题,做好作业。
高一数学教学计划2
一、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
二、教学建议
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。
三、教学内容
第一章集合与函数概念
1.通过实例,了解集合的含义,体会元素与集合的属于关系。
2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
3.理解集合之间包含与相等的含义,能识别给定集合的子集。
4.在具体情境中,了解全集与空集的含义。
5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。
10.通过具体实例,了解简单的分段函数,并能简单应用。
11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
12.学会运用函数图象理解和研究函数的性质。
课时分配(14课时)
第二章基本初等函数(I)
1.通过具体实例,了解指数函数模型的实际背景。
2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
3.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。
5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。
6.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的'概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。
7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。
课时分配(15课时)
第三章函数的应用
1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
2.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
3.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
4.根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。
课时分配(8课时)
3.1.1 | 方程的根与函数的零点 | 约1课时 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 约2课时 | 10月26日27日 |
3.2.1 | 几类不同增长的函数模型 | 约2课时 | 10月30日 | 11月3日 |
3.2.2 | 函数模型的应用实例 | 约2课时 | |
小结 | 约1课时 |
考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。
高一数学教学计划3
一、活动开展情景
在我县,今年的教学主体是“有效教学”,为此,我组在开展教研活动时也是紧紧围绕这一主题进行开的。在本学期内,我组主要开展过以下活动:
1、备课。本学期备课的形式主要是一个人备课为主,团体备课为辅。具体流程为个人备课→团体备课→个人备课,简称三级备课。
2、公开课。本学期的公开课主要是以每位教师不低于一次公开课的标准来执行的。公开课的开展形式与以往也有所不一样,以往的公开课仅有听课和评课两个环节,忽视了说课环节。但本学期却是把以往忽视了的说课环节也补上了,流程上将说课环节放在课前,构成了课前说课→听课授课→评课议课的模式。
3、课赛。本学期我组共参加过校外课赛一人次,获得三等奖一人次。校内不设课赛活动。
4、示范课。本学期我组上过示范课共计四人次,校内示范课三人次,校外示范课1人次。
5、数学竞赛。本学期我组共组织开展过数学竞赛一次,参赛学生达50余人,占全校学生总数的近10%。向学校申请获得专项资金710元,受益学生37人。颁发“优秀辅导教师”荣誉称号三人次。
6、学校文化建设。本学期我组特向学校申请宣传栏展板一块(近3平方米),在宣传和展
示我组的相关活动照片以及文件精神的同时,也在完善我校的学校文化建设。
7、阶段性教学质量反馈座谈会。本学期共开展过两次这类会议。
8、其他活动。外出培训学习四人次,网络培训学习6人次。全组成员外出交流学习两次,其他派代表外出交流学习三次。
二、活动成效
1、促进了教师队伍的建设和完善。本学期我组教师在以团队合作及个人努力拼搏相得益彰的结合下,经过以上一系列的活动加强了师师之间、师生之间、生生之间的沟通协调,再加以学校对本组的大力支持,本学期我组对教师队伍的建设取得了必须的成效。
2、开拓了教师的视野,提升了团队的师资力量。经过外出培训学习,网络学习以及与其他学校开展教研交流活动,不但开拓了我组教师的视野,同时也提升了我组教师的专业素养。
3、促进教师的个人成长与团队合作精神。经过开展团体备课、公开课、示范课以及课赛等活动,不但促进了我组教师的个人成长,同时也加强了我组的团队合作精神。
4、构成了良好的竞争观念和大局意识。经过开展课赛活动和设立“优秀辅导教师”奖,在团队之间有了竞争观念,同时也经过绩效的捆绑使得组内成员有了大局意识。
三、存在问题
1、缺乏领导艺术和管理本事。在我校数学组成员中,我属最年轻的数学教师之一,自然在管理的过程中对很多老教师心存芥蒂,这是心理隔阂问题;很难做到在对老教师十分尊重的`同时又让他们对自我的主张很服从,这是本事问题,也是领导艺术问题;很难做到让年轻教师彰显个性的同时又让他们能够严格约束自我,这是沟通问题。
2、个人精力有限。本人在担任我校数学教研组的同时还承担着两个毕业班的数学教学工作和一个毕业班的班主任工总,工作任务较为繁重。所以,各项工作难免会出现百密而一疏的漏洞。
3、缺乏组织和管理实践经验。参加工作才一年半就开始担任这样的职务,组织管理一群比自我大的成年人,这是零起点,无从谈及组织和管理经验。唯有摸着石头过河,边工作边总结,逐步积累这方面的实践经验。
四、努力方向
对于目前存在的问题,日后改善的措施还是以人为本,尊重同事,在虚心向经验丰富异常以往从事过这方面工作的老教师请教的同时,也要加强与年轻教师的沟通,多听取他们的意见提议,努力提高自我的业务水平和管理本事,不断学习新的管理理念,提高自我的管理艺术和组织本事。
高一数学教学计划4
一、指导思想:
遵循“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想,使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会提高的需要。
二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借签、发展、创新之间的关系,体现基础性、时代性、典型性和可理解性等,具有如下特点:
1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习活力。
2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3、“科学性”与“思想性”:经过不一样数学资料的联系与启发,强调类比、化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维本事,培育理性精神。
4、“时代性”与“应用性”:以具有时代感和现实感的素材创设情境,加强数学活动,发展应用意识。
三、教法分析:
1、选取与资料密切相关的、典型的、丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的'冲动,以到达培养其兴趣的目的。
2、经过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改善学生的学习方式。
3、在教学中强调类比、化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、学情分析:
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,梦想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长。应对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际本事出发,研究学生的心理特征,做好初三与高一的衔接工作,帮忙学生解决好从初中到高中学习方法的过渡。从高一齐就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和提高。
2、注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维本事和解决实际问题的本事,提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。
5、重视数学应用意识及应用本事的培养。
高一数学教学计划5
一、教材教法分析
本节课是x教版普通高中课程标准实验教科书数学必修(x)的第一节课。该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化。教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中。同时,通过对《xx》的学习和掌握将对今后学习本节内容《xx》和选修内容《xx》有着铺垫作用。由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系。
二、学情分析
一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力。另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想。这两方面都为学习本课内容打下了基础。
三、教学目标
1、知识与技能
①通过具体情境,使学生感受建立空间直角坐标系的必要性。
②了解空间直角坐标系,掌握空间点的.坐标的确定方法和过程。
③感受类比思想在探究新知识过程中的作用。
2、过程与方法
①结合具体问题引入,诱导学生探究。
②类比学习,循序渐进。
3、情感态度与价值观
通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法。通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间。
4、教学重点
本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为“空间直角坐标系的理解”。
5、教学难点
先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出“第三根轴”的建立,进而感受逐步发展得到“空间直角坐标系”的建立,再逐步掌握利用坐标表示空间任意点的位置。总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论。
高一数学教学计划6
教材分析:
解不等式是不等式学习的主要内容,是中学数学的一项重要技能。主要类型有:一元一次不等式或不等式组的解法,一元二次不等式或不等式组的解法。其中,一次不等式的解法是基础,初中已经学习,二次不等式是重点,也是学习的难点。作为数学重要的工具及方法,经常运用于其它数学知识之中。一元二次不等式的解法主要有二种,课本上介绍的是“数形结合”方法,这种方法将二次函数,二次方程结合为一体,并且借助“图形”直观地得出答案,充分展现了数学知识之间的内在联系,另外也展现了“数形结合”思想方法的巨大魅力。然而,个人认为,还有一种更加自然的方法,将二次不等式转化为一次不等式组的方法,这种方法思路自然,同时也体现了“转化”思想,难度也不大,应该更加符合学生的实际思维及思路。
学情分析:
初中已经学习了一元一次不等式(或组)的解法,积累了一定的解题经验。同时,对于二次方程,二次函数等相关知识学生均较为熟悉。然而,根据自己的调查,一少部分学生对于一元一次不等式及不等式组的解法都表现出一定程度的陌生。进而,可以先从复习简单的一次不等式及不等式组入手加以展开教学。
学生心理方面,学习积极性较高,对数学的学习兴趣、信心也比较理想,有较强的学习动机——考上大学,尽管是外在的诱因。
教学目标:
①知识与技能
熟练掌握一元一次不等式及不等式组的解法,初步学会两种方法求出一元二次不等式的解集
②过程与方法
经历不等式求解的探索及发现过程,体验“数形结合及转化”思想的魅力,掌握方法,学会学习
③情感、态度及价值观
在上述过程中,体验成功,激发了对数学学习的兴趣及信心,发展了对数学学习的积极情感,增强了学习的内在动机
教学重点:
一元二次不等式的解法
教学难点:
解法的探索及发现,关键在于“识图能力”
反思:
今天的课堂,这个难点突破欠缺力量,主要缘于自己备课时对难点考虑不到位,进而缺乏必要的设计。在课堂上,就难点特别与个别差生进行了交流,并且给予了帮助及指导。在指导过程中,我找出了他们困难的二个环节:
首先,对平面曲线上点的横坐标与纵座标之间的对应关系表现陌生,进而对它们的取值变化情况感到费解。
其次,是差生的思维能力尚处于“经验思维”,辩证思维能力薄弱,进而对运动中的点的坐标取值范围只能是“一筹莫展”。
在了解情况后,遵循“最近发展区”原理,以问题串的形式给差生提供必要的帮助后,差生也顺利度过了难关。由此足以说明,从知识的角度而言,“没有教不好的学生,只有不会教的教师:这句话还是相当有道理的。当然,这一切的前提就是对学生“学情”的掌握。美国著名心理学家、结构主义学派的代表人布鲁纳也有类似观点:给我一打健康的儿童,我可以教会他任何任何学科任何年龄段的任何知识。
教学程序:
一、复习一元一次不等式及不等式组的解法
以题组形式设计习题
①2x+3>7
②不等式组
③ax>b
二、创设二次不等式的生活背景实例,引入课题
采用课本上的实例,有关网络收费问题
三、一元二次不等式的.解法探索
(1)
在教师的启发引导下,从特殊到一般,学生经历“转化”方法的探索及发现过程。
由于这种方法课本没有给出,进而课堂上不作为重点,重在引导学生自行归纳、体验及总结“转化”思想,最后以课外思考题的形式设计相应习题。
(2)
采取启发式教学,师生共同经历“数形结合”方法的探索及发现过程,引导学生归纳出主要的解题步骤。今天的课堂上,这些解题步骤全部由学生的语言组织并完成,并撰写在黑板上,教师没有作任何干涉。我一直认为,只有学生自己亲身体验的知识才是有意义的知识,尽管这些知识不完整,语言或许不规范,思维或许不严密。
之后,从特殊到一般,研究一般的二元一次不等式的解法。由于经历了前面的解题过程,这个环节全部放手让学生完成,鼓励他们通过或独立或合作的方式解决学习任务,完成课本上的表格。
反思:根据课堂反馈,二个班级大约有70%的同学能够胜任这个任务。于是,在大多数学生完成的基础上,我又进行了一次讲解,特别加强了对“识图”环节的讲解力度,力求突破难点。
四、练习环节
可以说,即使到了高三,仍然有不少同学对于一元二次不等式解法的困惑。因此,熟练掌握二次不等式的解法,既是重点,也是难点。从学习类型看,这节课显然属于技能课,对于技能的学习及掌握,关键是强化练习,“力求熟能生巧”,达到自动化的水平。
课本上,配置了不少练习题。对于练习,我采取多种方式,或叫学生上黑板板书,借助学生练习规范解题格式;或者口答,说解题思路及答案;或者下面独立练习。
五、课堂小结
知识,思想、方法及感悟等
六、课后作业
①作业设计:分成A、B两层,难度不一,让学生自主选择,均来源于课本上的A组或B组
②课外思考题:
1比较两种解题方法即“转化及数形结合”方法的优劣,以及它们之间的异同
2已知不等式mx^2-(m-2)x+m>0的解集为R,求m的取值范围
变式一:戓将R改为空集,此时结论如何
变式二:仿上,自己改编条件,并解之。
反思:课外思考题的设计,可以提升课堂容量,深化课堂知识,提高课堂思维含量,为优生服务,发展学生的思维能力,激发他们的学习兴趣。同时,加强变式教学,可以充分拓展习题的潜在价值,期望实现“举一反三”的目标。
高一数学教学计划7
一.基本情况分析:
1.学生情况分析:4个重点班的学生,基础比较好,学习积极性高.普通班学生在基础、学习习惯、学习自觉性等方面都有一定差距,因此在教学中需时时提醒学生,培养其自觉性。学生存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于强化基础知识,培养学生的计算能力,提高思维能力,争取每堂课教学一个知识点,掌握一个知识点。
2.教材分析:本学期时间短,教学任务是必修4第二章,必修5,必修2涉及平面向量,解三角形,数列,空间几何体,点,线面的位置关系,直线与方程,圆与方程。
二.工作要点及措施
1、教案学案一体化继续探索适合我校学生实际的课堂教学模式,为发挥学生的主体作用,切实提高课堂效率,本学期推行三图四化的使用,基本操作办法是,提前一天把学案发给学生,让学生课前预习,即先自主学习,在课堂上,让学生充分活动,在教师的问题引导下,积极思考,同学之间认真讨论,确定问题的解决的方法途径和结论,教师在课堂上做好问题的引导和问题的变式,想方设法的激励学生思考问题,在学生回答问题后对学生进行肯定和鼓励。
三图四化工厂的设计
组内成员先自行设计出学案初稿,然后经备课组全体成员集体教研、讨论,确定学案的定稿。由于课型不同,学案的环节也相应存在着不同,但每个学案都应包括学习目标、学习重点、导学问题、学法指导、达标训练等环节,在设计中要把握问题的难度,在操作中低重心运行,为保证高考升学取得大面积丰收,教学要面向全体学生,教学要求要低一些,让后进生能接受,调动他们的学习积极性,促进后进生的转变,由此来督促中上等学生的学习。
(1)学习目标的制定。学习目标要明确,学生能一目了然,切忌学习目标过多,让学生在课堂的开始就引起消极情绪。
(2)导学问题的设计。导学问题的设计不是把课本所学知识变成问题然后简单逻列,而是根据教材的特点,学生的实际水平能力,联系社会现实问题,设计成不同层次的问题。问题的设计和问题的形式灵活多样,可以是问题式、简答式等等,根据学习内容的不同采用不同的形式。
(3)学法指导。
学法指导也就是学习方法、活动方式的指导及疑难问题的提示等。学生对每节课知识掌握的如何,学习方法的指导起到了关键作用。本环节的目的`是让学生在平时的学习过程中随时掌握解决问题的方法,逐步由学会变为会学。
(4)达标训练的设计。为了使学到的知识及时得到巩固、消化和吸收,进而转化为能力,要精心设计有阶梯性、层次性的达标训练,要注意此环节应面向全体学生,发展各类学生的潜能,让每个学生在每节课后都有收获,都有成就感。
2、集体备课我们要克服以往集体备课中存在的问题,真正提高说课质量,使集体备课对每位教师尤其是新教师起到有效的指导和帮助作用,将集体备课落到实处。具体做法如下:
(1)提前确定教学进度、中心发言人(详情见附表)及说课时间(每周五下午6、7节)。
(2)中心发言人针对本年级学生实际情况,精心设计课堂结构,精选例题和作业,设计好学案,可以适当多选些题目,文科生在此基础上可进行适当删改(本学期在教学内容上文理没有什么差别),要注意低起点、多重复。说课时,要说透教材、教法、教学重点和难点,例题要说明选题意图,要有详细的解题过程、注意事项等,特别要在教学方法的改进上多下功夫,要从学生现有的认知水平出发,设想学生可能出现的种种问题及应对措施。作业要有针对性,层次性,既巩固课上的知识点、题型,又要有一定的思维延展性,使文理科的学生在作业上有一定的区分度,使学有余力的学生有一个锻炼、培养思维能力的平台。
(3)每位教师在说课前都要做好准备,认真研究教材教法知道要说的是什么内容,包括哪些基础知识和基本题型,了解本部分内容涉及的数学思想方法,做完说课稿上的例题、习题、作业,对例题的讲解和其中蕴含的数学思想和解题技巧、计算技巧形成一个明确的认识,并写好初备提纲,以备说课时作出必要的补充和自己的见解。每位教师可以对说课稿进行补充,也可就初备中发现的问题提问,然后全组教师进行交流,以改进教法、增删例题和作业,使说课稿更加完善和实用。
3、集体听评课为提高每位教师的教育教学水平,依据学校教学计划,青年教师每周听课1节,其他教师月至少2节。每周进行一次集体听评课活动(详情见附表)。评课时不仅要说优点,更要说不足和遗憾,提出意见和建议。当局者迷,这样做有利于授课教师认清自身存在的问题,以改进教学,这也是对授课教师负责任的一种表现。通过评他人的课,对比查找自己存在的问题,有利于改进教学。
4、教案:要写明教学时间、课题、教学重点难点、教学方法、教学过程等。集体说课后,每位教师都要结合本班学生实际情况,精心设计课堂45分钟应如何分配到各个教学环节,要提问什么问题,提问谁,例题怎样分析,渗透什么思想方法。教学过程要有复习回顾、导入设计、师生活动、例题的分析、作业设计与小结等。每位教师上完课之后都要思考两个问题:我这节课上得如何?怎样上这节课更好、最好?并结合课堂上出现的各种情况,认真写好教学反思,或总结经验,或反思失误,或记录灵感,为今后教学和科研工作积累最实用的资料。
5、上课要重视三图四化的应用,要用好学案,设计整个课堂的教学环节;
(1)我们要率先遵守课堂常规,及时到位候课,提醒学生做好上课的准备。上课过程中,语言要简洁生动,板书、解题、作图要规范严谨,不要出现知识性错误。身教胜于言教,我们怎样要求学生,就应比他们做地更好,用自身的行动为学生作好示范。
(2)把主动权交给学生,多作主持人,少当播音员。学生能做的事,就交给学生做,不要好心办坏事。但必须指出,对于学生理解有困难、易混、易错的知识和题目,一定要多讲、讲透,千万不要为了形式上的留时间、留空间造成学生在知识和方法上出现漏洞。
(3)针对学生存在的问题,继续加强对学生学习习惯的培养,包括如何记笔记,记什么;培养先复习再做作业的习惯;独立思考的习惯;遇到困难查教材、查笔记的习惯等。
6、作业批改批改作业前,全组成员要校对答案,汇总解题方法。批改作业的基本要求是全批全改、及时准确。对错误较多的题目,认真分析原因,集中讲评,并督促他们改正;对学生书写、计算、作业整理方面存在的问题,要进行学法指导;认真书写评语,既要指出问题,又要多些鼓励
7、坐班:全组教师严格遵守学校的坐班纪律,保持办公室的安静,搞好办公室的卫生,责任到人,全组教师共同努力,创设良好的办公环境,提高干事的效率。
高一数学教学计划8
教学目标:
知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.
过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.
情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.
教学重点:
重点从五个具体幂函数中认识幂函数的一些性质.
难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.
教学程序与环节设计:
材料一:幂函数定义及其图象.
一般地,形如 的函数称为幂函数,其中 为常数.
幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种形式定义的函数,引导学生注意辨析.
下面我们举例学习这类函数的一些性质.
作出下列函数的图象:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律.
定义域
值域
奇偶性
单调性
定点
师:引导学生应用画函数的性质画图象,如:定义域、奇偶性.
师生共同分析,强调画图象易犯的错误.
材料二:幂函数性质归纳.
(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);
(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;
(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.
例1、求下列函数的定义域;
例2、比较下列两个代数值的`大小:
[例3]讨论函数 的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.
练习
1.利用幂函数的性质,比较下列各题中两个幂的值的大小:
2.作出函数 的图象,根据图象讨论这个函数有哪些性质,并给出证明.
3.作出函数 和函数 的图象,求这两个函数的定义域和单调区间.
4.用图象法解方程:
1.如图所示,曲线是幂函数 在第一象限内的图象,已知 分别取 四个值,则相应图象依次为:.
2.在同一坐标系内,作出下列函数的图象,你能发现什么规律?
高一数学教学计划9
、
Ⅰ.教学内容解析
本节课的教学内容,是指数函数的概念、性质及其简单应用.教学重点是指数函数的图像与性质.
这是指数函数在本章的位置.
指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践.指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程.
指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义.
Ⅱ.教学目标设置
1.学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念.
2.学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小.
3.学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法.
4.在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力.
Ⅲ.学生学情分析
授课班级学生为南京师大附中实验班学生.
1.学生已有认知基础
学生已经学习了函数的概念、图象与性质,对函数有了初步的认识.学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力.学生已有研究一次函数、二次函数等初等函数的直接经验.学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯.
2.达成目标所需要的认知基础
学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力.
3.难点及突破策略
难点:1. 对研究函数的一般方法的认识.
2. 自主选择底数不当导致归纳所得结论片面.
突破策略:
1.教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段.
2.组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思.
3.对猜想进行适当地证明或说明,合情推理与演绎推理相结合.
Ⅳ.教学策略设计
根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式.通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段.
学生的自主学习,具体落实在三个环节:
(1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念.
(2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升.
(3)性质应用阶段,学生自主举例说明指数函数性质的应用.
研究函数的性质,可以从形和数两个方面展开.从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明.
Ⅴ.教学过程设计
1.创设情境建构概念
师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系.你能用函数的观点分析下面的例子吗?
师:大家知道细胞分裂的规律吗?(出示情境问题)
[情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?
[情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%.如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?
[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0.84x.
师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?
〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?
[设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系.引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示.初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构.指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0.a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义.为了使指数函数与对数函数能构成反函数,规定a≠1.此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”.
[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax.
[教学预设]学生能举出具体的例子——y=3x,y=0.5x….如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现.进而提出这类函数一般形式y=ax.
方案1:
生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))
师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)
生:函数y=0.5x,y= x,y=(-2)x,y=1x…
师:板书学生举例(停顿),好像有不同意见.
生:底数不能取负数.
师:为什么?
生:如果底数取负数或0,x就不能取任意实数了.
师:我们已经将指数的取值范围扩充到了R,我们希望这些函数的定义域就是R.
(若没有学生注意到底数的取值范围,可引导学生关注例举函数的定义域.若有同学提出情境中函数的定义域应为N+,师:我们已经将指数的取值范围扩充到了R,函数y=2x和y=0.84x中,能否将定义域扩充为R?你们所举的例子中,定义域是否为R?)
师:这些函数有什么共同特点?
生:都有指数运算.底数是常数,自变量在指数位置.
(若有学生举出类似y=max的例子,引导学生观察,它依然具有自变量在指数位置的特征.而刻画这一特点的最简单形式就是y=ax,从而初步建立函数模型y=ax,初步体会基本初等函数的作用.)
师:具备上述特征的函数能否写成一般形式?
生:可以写成y=ax(a>0).
师:当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)
方案2:
生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))
师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)
生:函数y=0.5x,y= x,…
师:这些函数的'自变量是什么?它们有什么共同特点?
生:(可用文字语言或符号语言概括)都有指数运算.底数是常数,自变量在指数位置.可以写成y=ax.
师:y=ax中,自变量是x,底数a是常数.以上例子的不同之处,是底数不同.那你觉得底数的取值范围是什么呢?
生:底数不能取负数.
师:为什么?
生:如果底数取负数或0,x就不能取任意实数了.
师:为了研究的方便,我们要求底数a>0.当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)
[阶段小结]一般地,函数y=ax(a>0且a≠1)称为指数函数.它的定义域是R.
[意图分析]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的做法剥夺了学生参与概念形成的过程.此处不宜纠缠于y=22x是否为指数函数等细枝末节.指数函数的基本特征是自变量出现在指数上,应促使学生对概念本质的理解.指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理.
2.实验探索汇报交流
(1)构建研究方法
师:我们定义了一个新的函数,接下来,我们研究什么呢?
生:研究函数的性质.
〖问题2你打算如何研究指数函数的性质?
[设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法.开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发.教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归.中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑.
[师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法.
[教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法.部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质.另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.
师:(稍等片刻)我们一般要研究哪些性质呢?
生:变量取值范围(定义域、值域)、单调性、奇偶性.
师:(板书学生回答)怎样研究这些性质呢?
生:先画出函数图象,观察图象,分析函数性质.
生:先研究几个具体的指数函数,再研究一般情况.
师:板书“画图观察”,“取特殊值”
(若没有学生提出从特殊到一般的思路.师:底数a的取值不同,函数的性质可能也会有不同.一次函数y=kx(k≠0)中,一次项系数k不同,函数性质就不同.底数a可以取无数多个值,那我们怎么办呢?)
(若有学生通过对y=2x解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:你的想法也很有道理,不妨试一试.(仍引导学生从具体指数函数图象入手.))
[意图分析]学习的过程就是一个不断地提出问题、解决问题的过程.提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展.
(2)自主探究汇报交流
师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了.
〖问题3选取数据,画出图象,观察特点,归纳性质.
[设计意图]若直接规定底数取值,对于为什么要以y=2x,y=3x,y=0.5x为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的.若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受.学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识.并且学生能在过程中体会数据如何选择,了解研究方法.
由于描点作图时列举点的个数的限制,学生对x→∞时函数图象特征缺乏直观感受.而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用绘图软件作出底数连续变化的图象 ,验证猜想.
数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验.
[师生活动]学生选取不同的a的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质.
[教学预设]学生通过观察图象,发现指数函数y=ax(a>0且a≠1)的性质.教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质.在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质.教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法.教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质.其中⑥⑦不强加于学生.对于⑥,要引导学生在同一坐标系中画出图象,启发学生观察底数互为倒数的指数函数的图象,先得到具体的例子.对于⑦,在例1第3小题中,会有学生提出利用不同底数指数函数图象解决,可顺势利导,也可布置为课后作业,继续研究.
生:自主选择数据,在坐标纸上列表作图,列出函数性质.
师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报.)有条理地整理一下结论,讨论交流所得.(同时用实物投影仪展示学生所画图象.若没有投影仪,用几何画板作出图象.)
生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y轴对称的两个指数函数.
师:(过程性引导)底数你是怎么取的?你是怎样观察出结论的?在列表过程中,你有什么发现吗?为什么要在两个坐标系中画图?为什么不也取两个底数小于1?
师:(用彩笔描粗图象,故意出错)错在哪里?为什么?
生:指数函数是单调递增的,过定点(0, 1).
师:(引导学生规范表述,并板书)指数函数在(-∞, +∞)上单调递增,图象过定点(0, 1).
师:指数函数还有其它性质吗?
师:也就是说值域为(0, +∞).
生:指数函数是非奇非偶函数.
师:有不同意见吗?
生:当0
(其它预设:
(1)当a>1时,若x>0,则y>1;若x<0,则y<1.
当00,则y<1;若x<0 y="">1.
(2)学生画出y=2x和y=3x图象,得出函数递增速度的差异.
(3)画出y=2x和y=0.5x图象,得到底数互为倒数的指数函数图象关于y轴对称.)
师:(板书学生交流结果,整理成表格.注意区分“函数性质”与“函数之间的关系”.若有学生试图说明结论的合理性,可提供机会.)大家认为底数a>1或0
[阶段小结] 指数函数y=ax(a>0且a≠1)具有以下性质:
①定义域为R.
②值域为(0, +∞).
③图象过定点(0, 1).
④非奇非偶函数.
⑤当a>1时,函数y=ax在(-∞, +∞)上单调递增;
当0
⑥函数y=ax与y=()x (a>0且a≠1)图象关于y轴对称.
⑦指数函数y=ax与y=bx(a>b)的图象有如下关系:
x∈(-∞, 0)时,y=ax图象在y=bx图象下方;
x=0时,两图象相交;
x∈(0,+∞)时,y=ax图象在y=bx图象上方.
[意图分析]通过探究活动,使学生获得对指数函数图象的直观认识.学生观察图象,是对图形语言的理解;根据图象描述性质,是将图形语言转化为符号或文字语言.对函数的理解,是建立在三种语言相互转化的基础上的.在交流汇报过程中,一方面要通过对探究较深入学生的具体研究过程的剖析,总结提升学习方法,优化学习策略;另一方面要关注部分探究意识与能力都薄弱的学生的表现,鼓励他们大胆发言,激励他们主动参与活动,让全体学生成为真正的学习主体.自主探究活动能充分激发学生的相互学习能力,能有效帮助学生突破难点.
3.新知运用巩固深化
(方案一)(分析函数性质的用途)
师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?
师:函数的定义域是函数的基础,是运用性质的前提.值域是研究函数最值的前提.具备奇偶性的函数,可以利用对称性简化研究.指数函数过定点(0, 1),说明可以将常数1转化为指数式,即1=20=30=…那么函数单调性有什么用呢?
生:可以求最值,可以比较两个函数值的大小.
师:那你能举出运用指数函数单调性比大小的例子吗?(提示:既然是运用指数函数单调性,那应该有指数式.)
生:(举例并判断大小.)
师:你考察了哪个指数函数?怎么想到的?(规范表述)
师:以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.(出示例1)
(方案二)
师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?
师:(口述并板书)你能比较32与33的大小吗?
生:直接计算比较.
师:那比较30.2与30.3的大小呢?能不能不计算呢?
生:利用函数y=3x的单调性.
师:能具体说明吗?(引导学生规范表达)我们再试一试.
(出示例1)
【例1】比较下列各组数中两个值的大小:
①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.
[设计意图] 引导学生运用指数函数性质.对于 32与33的大小比较,学生更可能计算出幂的值直接比较.变式后,学生可能作差或作商比较,转化为比较30.1与1的大小,进而运用指数函数单调性,也可能直接运用单调性.初步运用新知解决问题,注重题意理解,扩大知识迁移,感悟解题方法,达到对新知巩固记忆,加深理解.
[师生活动]学生板演,教师组织学生点评.
[教学预设] ①②两题,学生能运用指数函数单调性解决.②题学生可能得到错误答案,教师可组织相互点评,规范表达,正确运用性质.③学生可能运用不同方法,应给予充分的时间,并在具体问题解决后引导学生总结一般方法.
师:(引导学生规范表达)你考察了哪个指数函数?根据函数的什么性质?
师:(对③的引导)你考虑利用哪个函数?是y=1.5x还是y=0.8x?这两个函数有什么关联?(引导学生画出图象,从形上提示:图象有什么关联?)
生:它们都过点(0, 1).
师:也就是说,可以将1转化为指数形式,即1=1.50=0.80.那接下来呢?
生:比较1.50.3,0.81.2和1的大小.
师:我们找到了一个比大小的中间量.以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.
【例2】
①已知3x≥30.5,求实数x的取值范围;
②已知0.2x<25,求实数x的取值范围.
[设计意图]指数函数单调性的逆用,同时考查指数函数的定义域.
4.概括知识总结方法
〖问题4本节课我们学习了哪些知识?你还学会了哪些方法?
[设计意图] 回顾所学内容,深化认知.开放式小结,不同学生有不同的收获.
[师生活动]学生发言总结,交流所得.
[教学预设]
通过本节课对指数函数图象和性质的研究,我们获得了以下知识和方法:
①指数函数的定义与性质;
②研究函数的一般方法和步骤.
师:本节课我们学习了什么知识?
生:指数函数的定义和性质.
师:回顾我们的研究过程,我们是怎样研究指数函数的?
生:先确定研究的内容:定义域、值域、单调性、奇偶性和其它性质.
生:然后从几个具体的指数函数开始,画出图象,列出性质,最后得到一般情况.
师:这是一种从特殊到一般的研究方法.研究指数函数的方法,也是研究函数的一般方法,今后我们还会运用这样的方法研究新的函数.
[意图分析]课堂总结不是对所学知识的简单回顾,应让学生在知识、方法和策略上多层次地整理,促进学生理解所用学习方法的合理性与普遍性,使学生获得知识与能力的共同进步.
5.分层作业,因材施教
(1)感受理解:课本第54页,习题2.2(2):1,2,3,4;
(2)思考运用:运用今天的研究方法,你还能得到指数函数的其它性质吗?
[设计意图]分层布置作业,“感受理解”面向全体学生,旨在掌握指数函数的图象与性质.“思考运用”提供学生运用函数研究的一般方法自主研究的机会.
Ⅵ.教后反思回顾
一、对于指数函数概念的认识
指数函数是一种函数模型,其基本特征是自变量在指数位置.底数取值范围有规定,使得这一模型形式简单又不失本质.不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想.
二、对于培养学生思维习惯的考虑
在学生自主探索的过程中,教师应注意培养学生良好的思维习惯.实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯.对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明.学生不仅学到了数学知识,也初步体验了研究问题的基本方法.
三、关于设计定位的反思
本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略.如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程.、
高一数学教学计划10
一、基本情况
高一计算机1323班共有学生55人,其中男生42人,女生13人。高一新生刚进入高中,学习环境新,好奇心强.但是普遍学习习惯不好,数学基础较差,学习兴趣不浓.所以工作的重心在于提高学生对数学科的兴趣,以及在补足初中知识漏洞的前提下,进一步的夯实学生基础.
二、指导思想
全面提高学生的科学文化素养,围着课堂教学这个中心,更新教育观念,进一步提高教学水平,培养学生分析问题解决问题的能力,同时扎扎实实抓好基础知识,注意学生习惯的培养,为三年后高考打下坚实的基础。
三、工作任务和措施
任务:基础模块第一章至第四章
第一章集合(9月份
第二章不等式(10月份
第三章函数(11月份
第四章指数函数与对数函数(12月份-1月份
措施:
1.夯实三基
知识、技能和能力三者关系是互相依存、互相促进的整体,能力是在知识的教学和技能的培训中形成的,通过数学思想的形成和数学方法的掌握,能力才得到培养和发展,同时,能力的提高又会对知识的理解和掌握起促进作用。因此,在教学中应注意:
A.教学面向全体学生。
B.重视概念的归纳、规律的总结、技能的训练。
C.重视知识的产生、发展过程。
D.加强知识过关检测,做好查漏补缺工作。
2.优化课堂教学结构
A.精心设计课堂教学:
B.课堂练习典型化;
C.教学语言精练化
D.板书规范化。
3.加强学习方法指导:
A.指导学生看书,培养学生主动学习的习惯。
B.指导学生整理知识,总结解题规律,归纳典型例题解法及一题多解与多题一解。
4.加强学风建设与学习习惯的培养。
适当安排作业,认真检查督促,加强优生和后进生的辅导,对学生的作业尽量做到面批。
四、各章节授课具体时间安排:
(基础模块第一章集合(约12课时
(1理解集合、元素及其关系,掌握集合的表示法。
(2掌握集合之间的关系(子集、真子集、相等。
(3理解集合的运算(交、并、补。
(4了解充要条件。
(基础模块第二章不等式(约12课时
(1理解不等式的基本性质。
(2掌握区间的概念。高一上数学教学计划高一上数学教学计划。
(3掌握一元二次不等式的解法。
基础模块)第三章函数(约20课时
(1理解函数的`概念和函数的三种表示法。
(2理解函数的单调性与奇偶性。
(3能运用函数的知识解决有关实际问题。
(基础模块第四章指数函数与对数函数(约20课时
(1理解有理指数幂,掌握实数指数幂及其运算法则,掌握利用计算器进行幂的计算方法。
(2了解幂函数的概念及其简单性质。
(3理解指数函数的概念、图像及性质。
(4理解对数的概念(含常用对数、自然对数及积、商、幂的对数,掌握利用计算器求对数值的方法。
(5理解对数函数的概念、图像及性质。
(6能运用指数函数与对数函数的知识解决有关实际问题。
高一数学教学计划11
本学期担任高一xx两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、指导思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教学目标:
(一)情意目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)能力要求培养学生记忆能力
(1)通过定义、命题的'总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(2)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。
2、培养学生的运算能力
(1)通过概率的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
高一数学教学计划12
一、学生状况分析
学生整体水平一般,成绩以中等为主,中上不多,后进生也有一些。几个班中,从上课一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。
二、教材简析
使用人教版《普通高中课程标准实验教科书?数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念。基本初等函数。函数的应用)。必修2有四章(空间几何体。点线平面间的位置关系。直线与方程。圆与方程)。
三、教学任务
本期授课内容为必修1和必修2,必修1在期中考试前完成(约在11月5日前完成)。必修2在期末考试前完成(约在12月31日前完成)。
四、教学质量目标
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。
2、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
五、促进目标达成的重点工作及措施
重点工作:
认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。
分层推进措施:
1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。
2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性。注意运用对比的方法,反复比较相近的概念。注意结合直观图形,说明抽象的知识。注意从已有的知识出发,启发学生思考。
3、加强培养学生的'逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系。加强复习检查工作。抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。
6、重视数学应用意识及应用能力的培养。
高一数学教学计划13
一、学生在数学学习上存在的主要问题
我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:
1、进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
2、被动学习。许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。
4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。
5、不重视基础。一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。
此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高。
二、教学策略思考与实践
针对我校高一学生的具体情况,我在高一数学新教材教学实践与探究中,贯彻“因人施教,因材施教”原则。以学法指导为突破口;着重在“读、讲、练、辅、作业”等方面下功夫,取得一定效果。
加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
课前自学是学生上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。
上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。
独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”。
解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系。以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。
1、读。俗话说“不读不愤,不愤不悱”。首先要读好概念。读概念要“咬文嚼字”,掌握概念内涵和外延及辨析概念。例如,集合是数学中的一个原始概念,是不加定义的。它从常见的.“我校高一年级学生”、“我家的家用电器”、“太平洋、大西洋、印度洋、北冰洋”及“自然数”等事物中抽象出来,但集合的概念又不同于特殊具体的实物集合,集合的确定及性质特征是由一组公理来界定的。“确定性、无序性、互异性”常常是“集合”的代名词。
再如象限角的概念,要向学生解释清楚,角的始边与x轴的非负半轴重合和与x轴的正半轴重合的细微差别;根据定义如果终边不在某一象限则不能称为象限角等等。这样可以引导学生从多层次,多角度去认识和掌握数学概念。其次读好定理公式和例题。阅读定理公式时,要分清条件和结论。如高一新教材(上)等比数列的前n项和Sn。有q≠1和q=1两种情形;对数计算中的一个公式,其中要求读例题时,要注重审题分析,注意题中的隐含条件,掌握解题的方法和书写规范。如在解对数函数题时,要注意“真数大于0”的隐含条件;解有关二次函数题时要注意二次项系数不为零的隐含条件等。读书要鼓励学生相互议论。俗语说“议一议知是非,争一争明道理”。例如,让学生议论数列与数集的联系与区别。数列与数的集合都是具有某种共同属性的全体。数列中的数是有顺序的,而数集中的元素是没有顺序的;同一个数可以在数列中重复出现,而数集中的元素是没有重复的(相同的数在数集中算作同一个元素)。在引导学生阅读时,教师要经常帮助学生归类、总结,尽可能把相关知识表格化。如一元二次不等式的解情况列表,三角函数的图象与性质列表等,便于学生记忆掌握。
2、讲。外国有一位教育家曾经说过:教师的作用在于将“冰冷”的知识加温后传授给学生。讲是实践这种传授的最直接和最有效的教学手段。首先讲要注意循序渐进的原则。循序渐进,防止急躁。由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。
每堂新授课中,在复习必要知识和展示教学目标的基础上,老师着重揭示知识的产生、形成、发展过程,解决学生疑惑。比如在学习两角和差公式之前,学生已经掌握五套诱导公式,可以将求任意角三角函数值问题转化为求某一个锐角三角函数值的问题。此时教师应进一步引导学生:对于一些半特殊的教(750度,150度等)能不能不通过查表而求出精确值呢?这样两角和差的三角函数就呼之欲出了,极大激发了学生的学习兴趣。讲课要注意从简单到复杂的过程,要让学生从感性认识上升到理性认识。鼓励学生应积极、主动参与课堂活动的全过程,教、学同步。让学生自己真正做学习的主人。
例如,讲解函数的图象应从振幅、周期、相位依次各自进行变化,然后再综合,并尽可能利用多媒体辅助教学,使学生容易接受。其次讲要注重突出数学思想方法的教学,注重学生数学能力的培养。例如讲到等比数列的概念、通项公式、等比中项、等比数列的性质、等比数列的前n项和。可以引导学生对照等差数列的相应的内容,比较联系。让学生更清楚等差数列和等比数列是两个对偶概念。
3、练。数学是以问题为中心。学生怎么应用所学知识和方法去分析问题和解决问题,必须进行练习。首先练习要重视基础知识和基本技能,切忌过早地进行“高、深、难”练习。鉴于目前我校高一的生源现状,基础训练是很有必要的。课本的例题、练习题和习题要求学生要题题过关;补充的练习,应先是课本中练习及习题的简单改造题,这有利于学生巩固基础知识和基本技能。让学生通过认真思考可以完成。即让学生“跳一跳可以摸得着”。一定要让学生在练习中强化知识、应用方法,在练习中分步达到教学目标要求并获得再练习的兴趣和信心。例如根据数列前几项求通项公式练习,在新教材高一(上)P111例题2上简单地做一些改造,便可以变化出各种求解通项公式方法的题目;再如数列复习参考题第12题;就是一个改造性很强的数学题,教师可以在上面做很多文章。其次要讲练结合。学生要练习,老师要评讲。多讲解题思路和解题方法,其中包括成功的与错误的。特别是注意要充分暴露错误的思维发生过程,在课堂造就民主气氛,充分倾听学生意见,哪怕走点“弯路”,吃点“苦头”;另一方面,则引导学生各抒己见,评判各方面之优劣,最后选出大家公认的最佳方法。还可适当让学生涉及一些一题多解的题目,拓展思维空间,培养学生思维的多面性和深刻性。
例如,高一(下)P26例5求证。可以从一边证到另一边,也可以作差、作商比较,还可以用分析法来证明;再如解不等式。常用的解法是将无理不等式化为有理不等式求解。但还可以利用换元法,将无理不等式化为关于t的一元二次不等式求解。除此之外,亦可利用图象法求解。在同一直角坐标系中作出它们的图像。求两图在x轴上方的交点的横坐标为2,最终得解。要求学生掌握通解通法同时,也要讲究特殊解法。最后练习要增强应用性。例如用函数、不等式、数列、三角、向量等相关知识解实际应用题。引导学生学会建立数学模型,并应用所学知识,研究此数学模型。
4、作业。鉴于学生现有的知识、能力水平差异较大,为了使每一位学生都能在自己的“最近发展区”更好地学习数学,得到最好的发展,制定“分层次作业”。即将作业难度和作业量由易到难分成A、B、C三档,由学生根据自身学习情况自主选择,然后在充分尊重学生意见的基础上再进行协调。以后的时间里,根据学生实际学习情况,随时进行调整。
5、辅导。辅导指两方面,培优和补差。对于数学尖子生,主要培养其自学能力、独立钻研精神和集体协作能力。具体做法:成立由三至六名学生组成的讨论组,教师负责为他们介绍高考、竞赛参考书,并定期提供学习资料和咨询、指导。下面着重谈谈补差工作。辅导要鼓励学生多提出问题,对于不能提高的同学要从平时作业及练习考试中发现问题,跟踪到人,跟踪到具体知识。要有计划,有针对性和目的性地辅导,切忌冷饭重抄和无目标性。要及时检查辅导效果,做到学生人人知道自己存在问题(越具体越好),老师对辅导学生情况要了如指掌。对学有困难的同学,要耐心细致辅导,还要注意鼓励学生战胜自己,提高自已的分析和解决问题的能力。
高一数学教学计划14
一、教学内容
本学期将完成数学必修1和数学必修4 (人教A版)两本教材的的学习,教学辅助材料有《同步金太阳导学》。
二、教学目标与要求
认真深入地学习《新课程标准》,研读教材。明确教学目的,把握教学目标,把准教学标高。注意到新教材的特点亲和力问题性思想性联系性,注意对基本概念的理解、基本规律的掌握、基本方法的应用上多下功夫,转变教学观念,螺旋上升地安排核心数学概念和重要数学思想,加强数学思想方法的渗透与概括。在课堂教学中要以学生为主,注重师生互动,对基本的知识点要落实到位,新教材对教学中有疑问的地方要在备课组中多加讨论和研究,特别是有关概念课的教学,一定要讲清概念的发生、发展、内涵、外延,不要模棱两可。
1. 处理好初高中衔接问题。初中内容的不适当删减、降低要求,导致学生双基无法达到高中教学要求;高中不顾学生的基础,任意拔高教学要求,繁琐的、高难度的运算充斥课堂。对初中没学而高中又要求掌握的内容(具体内容见附录)。
2. 准确把握教学要求,循序渐进地教学。不搞一步到位删减的内容不要随意补充;不要擅自调整内容顺序;教辅材料不能作为教学的依据;把更多的注意力放在核心概念、基本数学思想方法上;追求通性通法,不追求特技。
3. 适当使用信息技术。新课程主张多媒体教学。在教材中很容易发现新课改对信息技术在数学教学上的应用,并在配备的`光盘中提供了相当数量的课件,有利于学生更全面的吸收知识,提高课堂注意力和学习的兴趣。但我还是认为,多媒体知识教学的辅助手段,选不选用多媒体要看教学内容。尤其是数学这门学科,有些直观的内容用多媒体还是不错的,但有的内容诸如让学生思考体会的问题不是很适合多媒体教学的。根据学习内容需要选择恰当的信息技术工具和使用科学型计算器;提倡适当使用各种数学软件。
4. 充分发挥集体备课的作用。利用每周一次的集体备课,认真讨论本周的教学得失,研究下周所教内容的重难点,安排周练的内容。要根据实际情况,有针对性地组编训练题,做到每周一次综合训练(同步或滚雪球式的保温训练),一次微型补差训练,要搞好单元过关训练。选题要注意基础,强化通法,针对性强,避免对资料上的训练题全套照搬使用。要重视对数学尖子生的培养,力争在数学竞赛中取得好成绩。
5. 在重视智力因素的同时必须关注非智力因素。应认识到非智力因素在学生全面发展和数学学习过程中所起的重要作用,并内化为自觉的行为,切实培养学生学习数学的兴趣和良好的个性品质。
高一数学教学计划15
进一步深化教育教学改革,树立全新的语文教育观,构建全新而科学的教学目标体系、数学网特制定高一上学期数学函数的基本性质教学计划模板。
教材分析
函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的'共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。
学情分析
学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。
教学建议
以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。
教学目标
知识与技能
(1)能理解函数单调性、最值、奇偶性的图形特征
(2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性
(3)单调性与奇偶性的综合题
(4)培养学生观察、归纳、推理的抽象思维能力
过程与方法
(1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念
(2)渗透数形结合的数学思想进行习题课教学
情感、态度与价值观
(1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳
(2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达
课时安排
(1)概念课:单调性2课时,最值1课时,奇偶性1课时
(2)习题课:5课时
【高一数学教学计划】相关文章:
数学高一教学计划03-10
高一数学教学计划11-02
高一数学教学计划12-24
高一数学的教学计划04-04
高一数学教学计划05-29
高一数学教学教学计划02-06
关于高一数学教学计划01-29
高一数学教学计划范本01-22
高一数学教学计划优秀10-26
高一数学的教学计划通用10-12