小学五年级数学《解决问题的策略——倒推》教案

时间:2025-10-09 09:10:30 蔼媚 小学数学教案 我要投稿
  • 相关推荐

小学五年级数学《解决问题的策略——倒推》教案

  作为一位无私奉献的人民教师,总归要编写教案,教案有助于学生理解并掌握系统的知识。那么优秀的教案是什么样的呢?下面是小编为大家整理的小学五年级数学《解决问题的策略——倒推》教案,仅供参考,欢迎大家阅读。

小学五年级数学《解决问题的策略——倒推》教案

  小学五年级数学《解决问题的策略——倒推》教案 1

  一、激活经验,感知策略

  1.猜一猜:老师的年龄加上9的和再除以4,恰巧是10岁。老师今年是多少岁?

  2.谈话:这是老师每天上学从家到学校的路线,你能说说老师每天放学从学校回家的路线吗?(多媒体呈现:老师家→向东50米到苍梧绿园→向北200米到教育局→向西150米到学校)

  3.揭题:

  刚才,我们算出了刘老师的年龄,研究了刘老师返回的路线。大家有没有感觉到,解决这两个问题时都分别使用了一些方法,这些方法之间有没有什么相同之处呢?(板书:倒过来推想)

  这种“从结果出发,倒过来推想”的策略,在我们的日常生活和数学学习中经常使用,是一种重要的解决问题的策略,不信,咱们继续看——

  设计意图:学生数学知识的形成是以一种积极的心态,调动原有的知识和经验尝试解决新问题的过程。因此,通过“猜年龄”和“返回路线”两个已有经验的唤醒,为倒推策略的探索提供了清晰地新旧知识间的“固着点”,促进新认知的高效建构。

  二、初步体验,建立模型

  1.出示例l

  师:这儿有两杯果汁,从图中你可以了解到哪些信息?

  生:一共有400毫升。

  生:甲杯果汁比乙杯的多。

  师:假如有两人来喝这两杯果汁,你觉得要怎样做才公平一点呢?

  生:把两杯倒在一起,然后平均分。

  生:甲杯倒给乙杯一点,使两个杯子同样多。

  师:现在从甲杯倒人乙杯40毫升,甲乙两杯的果汁数量各发生了怎样的变化?

  生:甲杯减少了40毫升,乙杯增加了40毫升。

  提出问题:要求原来两杯果汁各有多少毫升?

  2.解决问题

  填写课本第88页的表格。填完后说说你是怎么推算的。

  甲杯/ml

  乙杯/ml

  现在

  原来

  结合回答演示:甲杯的果汁数就在现在200毫升的基础上增加多少,乙呢?

  交流:展示学生的表格,说一说想法?

  追问:要求原来的情况,我们是从哪儿开始想起呢?原来的变化过程是甲杯倒人乙杯40毫升,倒推时是怎样变化的?(强调:变化过程相反)

  3.回顾反思

  师:回想一下,刚才解决问题的过程中运用了什么方法,我们先算的是什么?我们是从哪里开始倒推的呢?

  小结:看来当我们知道现在的量,要求原来的量时(板书),我们就可以用倒推的方法来解决。(完成板书:原来: ←倒过来想一想 现在)

  其实.用倒推的方法解决问题在前面的学习中我们已经接触过,请看:填一填:

  在解决这些问题时有什么小技巧吗?先倒推哪一步?

  小结:倒过来推想就要从现在的数据出发,根据各自发生的变化往回推算出原来的数据,也可以简称倒推的策略。(板书课题:解决问题的策略——倒推)

  设计意图:如何将作为思维结果的教学内容转化为思维过程的材料?在例l的教学过程中,借助多媒体动态展示题中的信息和问题,;揭示了倒推问题的三要素:原来状态、变化过程和结果,使学生感受到这类问题的结构特征,师生在互动对话中建构数学模型。接下来的“填一填”,再次让学生体验到倒推过程与变化过程的相反性,感悟倒推的顺序,为例2多步倒推的探究过程做好了良好的心理定向和认知铺垫。

  三、自主探究,深化理解

  1.探索例2

  出示例2:小明原来有一些邮票,今年又收集了24张。送给小军30张,还剩52张。小明原来有多少张邮票?

  师:哪位同学来读读上面的信息?

  师:这时候,老师看到的是一张张自信的面庞,还有的同学拿起了笔,没有人怀疑同学们不会解答这样的问题。不过刘老师关心的不是这个,而是——

  多媒体呈现:

  ①你能把题目中的条件和问题摘录下来进行整理吗?

  ②你准备用什么策略解决这个问题?在小组内交流想法,列式并解答。

  2.整理信息,讨论交流

  ①把摘录的条件和问题完成在作业纸上。这个变化的过程是什么?

  原有?张→又收集24张→送给小军30张→还剩52张

  原有?张←去掉24张←跟小军要回30张←还剩52张

  或符号表达:

  学生说一说想法。

  ②师:要求小明原来有多少张邮票,整理好条件,你们是用什么策略想这个问题的昵?

  可以怎样列式的呢7

  第一种:

  52+30-24=58(张)

  师:先倒推哪一步?再倒推到哪一步?倒推时的过程与原来的变化过程相反吗?

  第二种:

  52+(30-24)=58(张)

  师:原来这两个变化的过程可以合二为一吗?现在比原来少6张,现在有52张,把这少的6张补起来就可以得出原来的张数了,52加6的过程;是不是用的倒推法。我们把它变成了一步倒推的.题目了。

  ③检验。

  可以写答了吗?结果是否正确该如何验证呢?

  3.回顾反思,对比深化

  同学们真了不起!通过自主探索解决了这道问题。那么,解决这个问题,大家用的是什么策略?

  师:你认为什么样的情况适合用“倒推”的策略来解决问题呢?怎样运用呢?

  小结:如果某种数量经过一系列变化后,已经知道了现在的结果,要求原来的数量,就可以用倒推的策略。先从结果出发,一步一步往前倒推,直至求出答案。在倒推的时候要注意变化顺序。(板书:变化顺序)

  设计意图:例2问题解决的过程,是一个学生主动探索,深化理解策略的过程。学生在自主探索的过程中,因为思维的深度参与,必然决定了学生对获得策略过程的经历是深刻的。教学中,让学生在摘录条件进行整理以及讨论交流中,逐渐感悟在倒过去想的时候,不仅要逆着事情变化的顺序进行,还要注意先把后发生的变化倒回去,再把先发生的变化倒回去,直至事情的原来情况。在汇报交流中,对两种方法的比较,体会到倒推不是解决问题的唯一策略,但却是一种重要的思想方法。检验答案是否正确,再次让学生体验事情的变化是有顺序的,从而感悟到有条理的思考是很重要的。

  小学五年级数学《解决问题的策略——倒推》教案 2

  [教学内容]

  教科书第88~89页例1、例2和“练一练”,练习十六第1、2题。

  [教学目标]

  1.使学生在解决实际问题的过程中学会用“倒推”的策略寻求解决问题的思路,并能根据实际的问题确定合理的解题步骤,从而有效地解决问题。

  2.使学生在对自己解决实际问题过程的不断反思中,感受“倒推”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力,发展数学应用意识。

  3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  [教学重、难点]

  重点:学会运用“倒推”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  难点:在正确运用策略的过程中感受“倒推”的策略对于解决特定问题的价值。

  [教学准备]

  多媒体课件

  [教学过程]

  一、创设情境,引出问题

  师:同学们,看老师这儿有两杯果汁(媒体出示两杯果汁),一共有400毫升,给两位同学喝,你觉得公平吗?要怎样才公平呢?(生:从甲杯倒一些给乙杯) 现在从甲杯倒入乙杯····(媒体演示甲杯倒入一些乙杯,直至两杯同样多)。问:现在两杯果汁——(学生齐答:两杯果汁同样多)。

  追问:现在每杯是多少毫升呢?你是怎么算的?

  (根据学生的回答,相机板书出:400÷2=200毫升 )

  二、自主探究,感悟策略

  1. 初步感知,一次变化还原。

  (1)引导探究,理清思路。

  师:那原来这两杯果汁各有多少毫升?(出示问题)我们可以怎样想?

  学生独立思考后,同桌说一说。

  组织全班交流,说说怎样想的,老师同时引导学生澄清思路,并借助媒体进行直观演示:乙杯倒回甲杯40毫升。

  师:现在乙杯剩下——(生齐答:160毫升),为什么?怎么算的`?板书出。

  续问:甲杯呢?(生齐答:240毫升)为什么?怎么算?板书出。

  (2)填表整理,加深体验。

  师:你能把刚才的想法填在表格里吗?

  学生独立填写后,组织交流,让学生说出:甲杯为什么是200+40呢?乙杯为什么是200-40呢?

  (3)回顾小结,得出策略。

  师:同学们,刚才我们在解决原来两杯各有多少毫升这两个问题时,你们是怎么想的?

  学生讨论、交流,全班交流时,抽象概括(师随机出示课题:解决问题的策略——倒推)。

  2. 应用深化,多步变化还原。

  (1)出示情境,整理信息。

  出示例2:小明原来有一些邮票,今年又收集了24张。送给小军30张,还剩52张。小明原来有多少张邮票?

  学生读题、审题后,问:用什么方法可以将题目的意思更清楚地表示出来?

  学生讨论后,得出:可以用摘录条件的方法进行整理。

  放手让学生尝试整理,然后,抽样展示,组织交流,并借助媒体出示箭头图:

  原来?张→ 又收集了24张→ 送给小军30张→ 还剩52张

  (2)自主探究,理清思路。

  师:根据这些信息,你准备用什么策略来解决这个问题?

  学生独立思考、同桌交流后,说出:可以用“倒过来想的方法”。

  师:你能依照上图的样子,表示出“倒推”的过程吗?

  学生尝试画出“倒推”的示意图。组织交流时,媒体出示下图:

  原来?张 去掉收集的24张 跟小军要回30张 还剩52张

  (3)深化思路,列式解答。

  师:根据上面的箭头图,你能列式解答吗?

  学生独立列式解答,抽样展示出学生的算法,组织交流,并让学生说出每一步表示的意思。

  (4)检验对比,体会策略。

  组织学生进行检验。

  比较检验的思路和解决问题的思路。

  师:这和我们解决问题的想法有什么不同呢?

  (5)引导反思,深化策略。

  师:解决上面的问题时,是怎样运用“倒过程推想”的策略的?你认为适合用“倒推”的策略来解决的问题有什么特点?

  学生讨论、交流后,达成共识。

  三、联系实际,解决问题

  1.在一次向灾区学校的援助活动中,李清同学把自己收藏图书的一半还多3本捐给了灾区的学校,自己还剩27本。他原来有多少本图书?

  学生读题、审题后,问:“收藏图书的一半”表示什么意思?

  学生理解之后,在作业纸上解答。全班交流,说说解决问题的方法。

  2.填一填:学生口答。

  师:仔细观察这两道题,你发现了什么?

  3.想一想:媒体出示:白果、栗子和柿子图片.

  学生观察图,交流从图中获取到的信息(媒体出示相关信息):

  5粒白果的重量=2粒栗子的重量,8粒栗子的重量=1个柿子的重量,1个柿子的重量=80克。

  学生独立在作业纸上完成后,全班交流。

  4.画一画:学生明确题意后,独立完成。

  全班交流,说说怎样想的。

  四、课堂总结

  师:同学们,刚才我们解决了这么多问题,有没有发现都是用了哪一种策略?在运用“倒推”的策略来解决问题时,可以用什么样的方法整理信息?

  五、课外拓展

  今天我们研究的这类问题,其实在古代早就有人研究了。我国唐代的天文学家、数学家张遂曾以“李白喝酒”为题材编了一道算题:李白街上走,提壶去买酒。遇店加一倍,见花喝一斗(斗是古代酒具,也可作计量单位)。三遇店和花,喝光壶中酒。借问此壶中,原有多少酒?请大家课后去研究。

  小学五年级数学《解决问题的策略——倒推》教案 3

  教学内容:

  教科书第88~89页的例1、例2和“练一练”,练习十六的相关习题

  教学目标:

  1、使学生在解决实际问题的过程中学会用“倒推”的策略寻求解决问题的思路,并能根据实际的问题确定合理的解题步骤,从而有效地解决问题。

  2、使学生在对自己解决实际问题过程的不断反思中,感受“逆推”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  学会用倒推的解题策略解决实际问题

  教学难点:

  根据具体问题确定合理的解题步骤

  教学准备:

  多媒体课件,练习纸。

  教学过程:

  一、激趣导入,初步建立倒推法的一般解题流程

  1、路线倒推

  师:前不久,学校组织大家去春游,还记得吗?

  生:记得

  师:游玩后一位同学写了这样的.一篇数学日记。来,听一听。

  (录音:我们8点从学校出发,一路经过长江大桥、老山风景区,最后到达雏鹰军校。下午沿原路返回,你知道我们的返回路线吗?出示:学校→长江大桥→老山风景区→雏鹰军校)

  师:谁能回答?

  生:返回路线是从雏鹰军校出发,经过老山风景区、长江大桥,最后到学校。

  (出示:学校←长江大桥←老山风景区←雏鹰军校)

  师:原来你是倒过来想的。

  2、翻牌倒推

  师:下面老师玩一个小魔术,想不想看?

  生:想

  师:看好了。

  (出示三张牌:先第一张和第二张交换位置,再将第二张和第三张交换位置)

  师:要想知道原来这三张牌是怎样摆放的,怎么办?

  生:(上台操作)先交换第二张和第三张位置,再交换第一张和第二张位置。

  师:你为什么这样操作?

  生:我是倒过来想的,刚才最后交换的是第二和第三张,那我就先交换这两张,在交换第一张和第二张。

  师:原来你也是倒过来想的。

  3、运算倒推

  师:我们再来玩一个小游戏,比比谁的反应快!

  (出示:)

  师:你能立刻报出表示多少吗?

  生:18

  师:你是怎么想的?

  生:6×5=3030-20=1010+8=18

  师:你也是倒过来想的

  4、小结

  师:刚才这3个问题,大家都是怎么想的?

  生:倒过来想的

  :师:在数学上,我们把倒过来想的方法称之为“倒推”(板书:倒推)

  今天这节课,我们就一起来研究怎样用倒推解决生活中的实际问题。

  二、教学例题,探究倒推法

  1、(出示例题:小明原来有一些邮票,今年又收集了24张,送给小军30张后,还剩52张。小明原来有多少张邮票?)

  师:你了解到哪些信息?

  生:我知道了小明原有一些邮票,收集了24张,送给小军30张,剩52张。求小明原来有多少张邮票?

  师:你能将这些信息进行整理吗?

  同座位讨论,其中一人记录。

  生:(同座位讨论整理过程)

  师:谁来介绍一下你们是怎么整理的?

  生:原有?张→又收集24张→送给小军30张→还剩52张

  师:我们已经整理了信息,你准备怎样解决这个问题?试一试。

  生:(尝试解题)

  师:谁来介绍你的计算方法?

  生1:52+30-24=58(张)

  师:你能具体说说算式的意思吗?

  生:从结果开始想,送出的要收回,而收集的要去掉。

  师:你听懂了吗?

  这个结果正确吗?你有办法验证吗?

  生:58+24-30=52(张)

  师:你是用顺推的方法,看剩下的是不是52张。

  这一题你还有不同的计算方法吗?

  生2:52+(30-24)=58(张)

  师:你能解释算式意思吗?

  生:在变化过程中,小明的邮票总共减少了6张,所以要用剩下的52张加上6张。

  师:听懂了吗?

  通过计算我们知道了小明原来有52张邮票。

  2、小结:

  师:第一种解法,是从结果出发,按顺序倒推出原来的情况。第二种解法,先比较小明的邮票是增加了还是减少了,再从结果出发倒推退出原来的情况。

  师:这两种解法列式不同,但在思考过程中有什么相同点?

  生:都采用了倒推的方法。

  师:为什么你们都选择倒推解决这个问题呢?

  生:比较简单,容易理解。

  师:原来用倒推解决这种问题,是一种既简洁又方便的解题策略。(板书:解决问题的策略)

  3、试一试

  出示图:

  师:你从图中你知道了什么?

  生:甲乙两杯果汁原来共重400毫升,从甲杯倒入乙杯40毫升,两杯果汁就同样多了,求原来两杯果汁各有多少毫升?

  师:你会解决这个问题吗?试一试。

  师:谁来说说你是怎么解决的?

  生1:400÷2=200(毫升)

  甲:200+40=240(毫升)

  乙:200-40=160(毫升)

  师:你能具体说说这三步的意思吗?

  生1:400÷2=200(毫升)求的是现在甲、乙两杯有多少毫升,再把到入乙杯的40毫升倒回去,200+40=240(毫升),求出甲原来有多少毫升,200-40=160(毫升),求出乙原来有多少毫升。

  师:他是用倒推的方法解决的,还有不同的方法吗?

  生2:40×2=80(毫升)

  400-80=320(毫升)

  原乙:320÷2=160(毫升)

  原甲:160+80=240(毫升)

  师:原来你是用另一种方法来解决的。

  师:倒推是解决这个问题的策略,当然也可以用其他方法来解决。

  三、巩固应用,提高运用策略的能力

  师:既然大家已经学会了倒推的解题策略,你会解决下面的问题吗?

  1、(出示:练习十六3)

  师:认真读题。

  你会解决吗?在练习纸上画一画。

  师:谁愿意说说你的方法?

  生:(边展示边讲解)从蛇馆向北走2格到猴山,再向西走4格到百鸟园,再向

  东南走一格到熊猫馆,最后向南走2格到大门。

  师:大家同意他的做法吗?

  2、(出示:练习十六2)

  师:你会解答吗?独立完成。

  师:谁来说说你是怎么算的?

  生1:5+25+10=40(分)10时-40分=9时20分

  生2:10时-10分-25分-5分=9时20分

  3、(出示:练一练)

  师:独立完成

  师:我们一起来看看几种不同的解题方法。

  (25+1)×2=52(张)

  25×2+1=51(张)

  师:哪种方法是正确的呢?

  你有办法验证自己的方法是正确的吗?小组讨论。

  师:我们一起来交流一下。

  生1:把52代入原题,进行顺推,看剩下的是不是25张。

  生2:51除以2就得到25.5张,这是不可能的。

  生3:用画线段图的方法。

  ......

  师:通过验证,我们知道了小军原来有52张画片。

  接着往下看。

  (出示:小军收集了一些画片,他拿出画片的一半还少一张送给小明,自己还剩25张,小军原来有多少张画片?)

  师:你能解决吗?

  生:(25-1)×2=52(张)

  四、总结全课,指导解题策略

  师:今天这节课,我们学会了什么解题策略?

  生:倒推。

  师:用倒推解决问题应从哪想起?

  生:从结果想起。

  师:倒推就是从结果出发,按顺序倒推出原来的情况。

  小学五年级数学《解决问题的策略——倒推》教案 4

  目标预设:

  1、让学生在解决问题中学会用“倒推思维”的策略寻求解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2、在观察、操作、讨论、交流中提高探索和解决实际问题的能力,获得解决问题成功体验。

  3、让学生在对解决实际问题中不断反思,感受“倒推思维”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  4、培养学生独立思考、善于倾听、质疑和验算的数学学习习惯。

  教学重点:

  体会策略是解决问题的计策,学会用“倒推思维”的策略解决问题。

  教学难点:

  能根据具体的问题确定合理的解题步骤。

  教学具准备:

  果汁杯两个、一瓶400毫升的果汁、果汁图片、小黑板若干

  课程实施:

  课前游戏:

  1、做相反动作

  2、猜数字游戏

  一个数加2得8,这个数是——

  一个数减2得8,这个数是——

  一个数乘2得8,这个数是——

  一个数除以2得8,这个数是——

  师:你们的表现真的很棒。

  师生问好!

  一、生活数学,激趣启智

  师:从课前游戏中我发现,咱班同学特别喜欢数学,今天就让我们随同冬冬和明明,去寻找生活中的数学,一同研究解决问题的策略。

  出示课题:解决问题的策略

  师:上周末,他俩去海门表妹家玩,乘坐的公共汽车从余东出发,沿途经过了树勋、麒麟、汤家、三厂,到达了海门。

  小黑板出示:余东树勋麒麟汤家三厂海门

  师:想想如果他们想原路返回,会依次经过哪些乡镇呢?

  生齐:海门、三厂、汤家、麒麟、树勋、余东。

  师:在回答这个问题时,我们都是——倒过来,一个一个往前推。

  板书:倒推。

  二、引导探究,掌握方法

  师:车子终于到了表妹方方家了,方方正准备了400毫升的果汁来招待好朋友呢?

  出示图片、实物(两杯果汁不一样多)

  师:都是好朋友,这样公平吗?

  生:不公平。

  师:怎样就公平了?

  生:两杯一样多。

  师:如果从甲杯倒入乙杯40毫升后一样多,那你知道原来两杯果汁各有多少毫升吗?

  师:请先独立思考,然后说说你第一步是怎么想的?

  生:共有400毫升,现在果汁同样多,那就说明都有200毫升。

  教师根据学生的回答,进行板书。400÷2=200ml

  甲杯(____毫升)乙杯(____毫升)

  现在

  原来

  教师出示小黑板

  师:接下来呢?

  学生说算式,教师板书。

  甲:200+40=240ml

  乙:200-40=160ml

  师:同意他的观点吗?让我们一起通过操作来验证一下吧。

  师:要想知道原来是多少?我们可以倒回去,观察果汁与刚才有何变化?教师演示

  引导学生说出:甲杯在200毫升的`基础上就多了——40毫升,这就说明了,甲杯原来比现在——多40毫升。那乙杯呢?

  生:乙杯原来比现在少40毫升。

  师:现在你能把表格补充完整吗?

  师:如何确定自己的结果是不是正确呢?(口述验算过程)

  师:喝完了果汁,方方给他俩讲起了她最近收集邮票的情况。

  小黑板出示:方方原有一些邮票,最近又收集了24张,送给好友小军30张,还剩52张。方方原有多少张邮票?

  师:请同学们默读一遍,想想从题中你读出了哪些信息?

  生齐说:冬冬原有x张,又收集了24张,送给小军30张,还剩52张。

  师:①想想用什么方式能清晰地把方方的邮票变化情况表示来?

  独立思考,并在纸上写一写、画一画、连一连。

  ②在小组里交流,说说你是准备如何解决的?

  ③最后独立列出算式。

  学生按要求逐步尝试。教师关注学生反应,把较好的作品画在小黑板上。

  小黑板出示:冬冬原有?张又收集了24张送给小军30张还剩52张

  师:这是某某的思考方式,让我们来听听他是怎么想的?

  生:我是这样思考的:现在有52本。把送给小军的30张要回来,那就是52+30=82张了,如果没有收集到24张,就是82-24=58张。

  学生回答时,教师边板书反向箭头。

  师:你们听明白了?谁来说说刚才这位同学是怎么思考的?

  生复述

  师:你真会倾听别人的发言,能把刚才这位同学的思路清晰的表达了出来。老师也听懂了。就是现在有52本。把送给小军的30张要回来,那就是52+30=82张了,如果没有收集到24张,就是82-24=58张。

  师:能根据这样的思路把算式列出来吗?

  生齐说,教师板书52+30-24=58张

  师:看着这样的算式你有什么疑问吗?

  师:老师有个问题,送给小军30张后变少了,应用减法,为何计算时用了加上了30?

  生:……

  师:是呀,送给小军30张后变少了,是针对原来的邮票张数来说的,但现在我们知道了结果还剩52张,要求原来的,所以要反过来加30张。明白了吗?

  师:还有其他的思考方式吗?

  生:……

  教师根据学生的解释,列出算式,52+(30-24)

  师:你觉得这样列式有道理吗?谁来说说。

  生:我是这样思考的:收集24张又送人30张,实则相当于送人6张,送人6张后是52张,那原来是52+6=58张。所以列式为52+(30-24)

  师:这个6表示现在比原来……(如果学生不会说,可引导学生继续说下去)

  师:怎么知道算出来的结果对不对呢?(再可以顺过去推算,看剩下的是不是52张。)

  师:你能用算式表示验算的过程吗?

  学生边说,边板书验算过程。58+24-30=52张

  师:通过了验算,我们才可以放心的写出答了。

  板书:答:冬冬原有邮票58张。

  师:刚才的两题我们都运用倒过来思考的

  方式,实际上这也是解决问题策略中的一种,这种方法就叫——倒推法。

  板书:法

  三、运用方法,巩固知识

  师:接下来,让我们运用倒推法一起解决他们三人遇到的生活中的问题。

  拿出练习纸。认真完成好后,请思考题。

  学生独立思考完成。

  练习纸

  ①冬冬和明明也示了他们的画片,他们原来共有60张画片,冬冬给了明明5张后,两人画片一样多。原来两人各有多少张画片?

  ②他们三人开始折千纸鹤了,如果裁纸要用5分钟,折纸鹤要25分钟,把纸鹤穿成一串要用10分钟。若要在上午十时全部完成,那么他们最迟从什么时间开始动手做?

  ③明明也给他们讲起了班级图书角的信息,他说昨天图书角原有一些图书,当天有人捐献了3本图书放入图书角,班级同学共借出10本,现在有8本,问原有图书多少本?

  ④玩了一天,冬冬和明明开始返回了,他们乘坐的公交车在文峰站点上来了9人,又下去了5人,这时车上正好有10人。问到站前车上原有多少人?

  池中的睡莲所遮盖的面积每天增加一倍,10天恰好遮住整个水池,睡莲遮住水池的一半需要多少天?

  (用阴影表示出每天的面积变化情况)

  第10天第9天第8天

  师:同桌交换,谁能确认自己的答案是正确的?

  师:告诉我你是怎么做到这样自信的?

  生:我检验的。

  师:那你说吧。

  同桌互批。

  师:有错误的举手。教师询问原因,全班一同解决。

  师:题结果是9天。

  五、课堂小结

  师:从大家的表现来看,你们掌握的很好。说说这节课你有哪些收获吧。

  生:……

  师:总结,解决问题的策略多种多样,今天学习的倒推法仅仅是众多方法中的一种,根据题目的要求选择合适的解决方法是最为重要的。

  教后反思:

  本节课从路线问题导入,让学生体会从原路返回时会依次经过哪些乡镇着手,初步体会倒推法的策略在生活中的价值,激起学生浓厚的学习兴趣。

  教学例题时,创设具体的生活情境,通过两个学生的行程,把两个例题有机的串联起来。教学例1时,通过让学生先独立思考,然后通过演示操作,让学生更好地体会解题过程。这里当学生说到甲杯比乙杯多80毫升时,应恰当地处理。教学例2时,通过箭头的思路图,清晰的表示出邮票张数的变化情况,教学时,引导学生提出质疑,理解送出的为何要加。同时对于第二种解法教师应更好地进行解释。

  练习设计了分层题,使学有余力的同学学得更多。基本练习题更关注了与例2类似的练习,使同学们掌握的更加的牢固。

【小学五年级数学《解决问题的策略——倒推》教案】相关文章:

小学数学《解决问题的策略》教案02-21

数学用替换的策略解决问题数学教案09-07

解决问题的策略教案09-08

解决问题的策略五年级数学教案04-04

五年级数学下册教案:解决问题的策略04-13

小学数学解决问题的教案05-15

小学数学六年级教案解决问题的策略04-10

小学数学《解决问题》教案10-28

小学数学六年级教案:解决问题的策略——转化06-07