- 相关推荐
六年级数学上册倒数的认识
六年级数学上册倒数的认识1
教学目标:

1、理解倒数的意义,掌握求倒数的方法。
2、能熟练的求出一个数的倒数。
学情分析:“倒数的认识”是在学生掌握了分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
教学重点:
理解倒数的意义和求一个数的倒数
教学难点:
理解“互为倒数”的.意义,明确倒数只是表示两个数间的关系。
教学方法:
三疑三探教学模式
教具准备:
多媒体课件
教学过程:
一、设疑自探
1、创设情境,导入新课
同学们,今天这节课老师给大家带来了几幅漂亮的图片,我们一起来欣赏一下吧!(出示课件图片)
通过欣赏这几幅图片,大家发现了什么?(图片中都有倒影)那么在我们的数学王国里也有这样的现象吗?(出示课件)今天这节课我们就一起来研究数学王国里的这种奇妙现象——倒数。(板书课题:倒数的认识)
2、设疑激趣
看到“倒数”这个数学新名词,大家脑子里产生了哪些问题?请大家来说说你们的问题。大家提的问题都很有价值,都是本节课我们学习的重点内容。
3、出示自探提示,组织学生自学。
针对本节课的学习内容制定了自探提示。(课件出示)
自探提示:
(1)倒数的意义是什么?
(2)倒数指的是一个数吗?
(3)怎样求一个数的倒数?
(4)是不是每个数都有倒数?
(5)互为倒数的两个数相等吗?
请同学们结合自探提示的这几个问题,自学课本28页的内容,让我们一块到书中去寻找“倒数”的秘密吧!
二、解疑合探
1、检查自探情况,提问学困生,中等生补充,优等生评价,根据反馈情况适时组织小组讨论或同桌讨论。
通过自学提问学生“倒数的意义是什么?”
课件出示:先计算,再观察,看看得数有什么特点?
得出结论:乘积是1的两个数互为倒数。
引导学生理解关键词“乘积是1”“两个数”“互为倒数”。
“乘积是1指的是相乘关系,并且积只能是1、
“两个数”指的是只有两个数。
“互为倒数”说明这两个数的关系是相互依存的,缺一不可,不能孤立的说某一个数是倒数,必须说清一个数是另一个数的倒数
举例说明:因为×= 1,所以和互为倒数,就是的倒数是,的倒数是。
请学生说出互为倒数的任意两个数。并且说说互为倒数的两个数有什么特点?
2、讨论(小组合探):1的倒数是(1)。
0有没有倒数?为什么?(0没有倒数,因为① 0作分母无意义②0×(任何数)≠1)
3、说一说怎样求一个数的倒数?
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置。
三、质疑再探
回顾自探提示的问题是否已解决?关于倒数,你还有什么疑问,提出来大家一起研究。(问题预设:怎样求带分数、小数的倒数?)
通过下面的练习题的解答来总结带分数、小数的倒数如何求倒数。
四、运用拓展
1、完成下面练习题。
2、全课总结
本节课你有什么收获?引导学生对本节课内容进行归纳整理,形成系统的认识。
3、布置作业:
(1)第28页做一做。
(2)练习六1、2、3题。
附:板书设计
倒数的认识
乘积是1的两个数互为倒数
1的倒数是1,0没有倒数
求倒数的方法:分子分母交换位置
六年级数学上册倒数的认识2
教学目标:
1、使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
2、培养学生观察、归纳、推理和概括的能力。
教学过程
一、创设活动情景,引入概念
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
让学生读一读:“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。
二、探究讨论,深入理解
让学生说说对倒数意义的理解。
提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)
判断下面的句子错在哪里?应该怎样叙述。
因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。
三、运用概念,探讨方法
出示例2,找一找哪两个数互为倒数?
汇报找的结果,并说说怎样找的?
1、 看两个分数的乘积是不是1;
2、 看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)
通过具体实例总结归纳找倒数的方法。
(1)找分数的倒数:交换分子与分母的位置。
例:
(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
例:
四、出示特例,深入理解
看一看,例2中的哪些数据没有找到倒数?(1,0)
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的.倒数。
因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
也可以这样推导:
1的倒数是1。
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
也可以这样推导:
分母不能为0,所以0没有倒数。
五、巩固练习
1、完成“做一做”。先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
六、总结
今天学习了什么?
什么叫倒数?怎样找出一个数的倒数?
六年级数学上册倒数的认识3
本节课是一节概念课,是陈述性知识,放在这个单元是起到了承上启下作用,是为了衔接分数乘法和分数除法计算法则。其目的就是为除以一个数等于乘这个数的倒数做铺垫,在这个问题上我一直认为:为什么要乘这个数的倒数这个问题要说清楚,否则分数除法的计算法则不好理解。
教学从寻找乘积是1的两个分数开始。在给出的8个分数中,学生能够找到三对乘积是1的分数。这项貌似游戏的活动凸显了“倒数”是乘积为1的两个数之间的关系,这正是建立倒数概念必须充分注意的内涵。教材在三对乘积是1的分数基础上,指出“乘积是1的两个数互为倒数”。学生准确理解这句话的意思,不仅要知道互成“倒数”的两个数的乘积是1,还要明白两个数是“互为倒数”的。教材里三个卡通的交流,说的都是两个分数的乘积是1。下面的文字叙述强调两个数“互为倒数”,还以3/8和8/3为例,引导学生体会“甲数是乙数的倒数,乙数也是甲数的倒数”。
求已知数的倒数分三个层次教学:先求3/5、2/3等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。在第一个层次里,要求学生观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。第二个层次写出整数的倒数。可以从概念出发,寻找与这个整数相乘等于1的数。如果把整数看成分母是1的分数,就能像分数那样直接写出它的倒数。第三个层次理解0没有倒数,并要求作出相应的解释。这是因为0和任何数相乘的积都是0,不存在与0相乘能够得到1的数。
倒数的意义就是一句话:乘积是1的两个数互为倒数。但是对于这句话的理解是有着比较丰富的内涵的,这也就是概念内涵的体现。这节课的教学流程分为这样几个基本块面:首先通过例题7提出的问题——给出倒数的含义——分层突击理解倒数含义——出示形式上的经典错例(特别是小数的倒数)——处理1和0的问题(这是本节课的难点)。
本文所谈的不是教学流程上的问题,而是通过倒数这个概念,谈一谈对概念教学的理解,从拆句的角度,乘积是1的两个数互为倒数拆为:乘积是1、两个数、互为倒数。
针对倒数这个概念,我认为:内涵是指向正例的,外延是指向反例的。比如:书上出示乘积是1的正例,我们需要出示商、和、差是1的反例;书上说的是两个数互为倒数,没有出示3个数的反例。这两个反例是针对倒数概念本身的。
学生在倒数的答案呈现上,习惯于用等号表示“的倒数是”这样的错误,比如2=1/2,从数学表达式上说这是非常明显的错误,学生确实犯了,而且每届都有这样的情况,在今年的教学中我已经强调并且纠正了这样的错误,这说明教学方式对于不同学生是不一样的,学生本身的理解和态度的端正与否也是重要的问题,需要引起重视。
本节课需要重视的第二个问题就是1和0的问题,这两个问题实际上牵涉到其他的概念:假分数、整数、自然数。假分数分为1和大于1的假分数;整数和自然数里都有0,在这个问题上需要处理好,学生的理解需要通过不同的方式来体现。
单独的概念教学,或者说倒数概念本身不是一个很复杂的问题,有关倒数的知识主要包括两点:一点是倒数的意义,另一点是求倒数的方法。学生建立倒数的概念以后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。
相同的教学内容,几年的教学实践下来,发现:同样的教学内容,同样的知识点,为什么会出现这么大的.差别?究其原因就是因为我们需要关注概念结构出现的次序,比如:整数的概念是复习、假分数的概念是辨析。
皮亚杰理论中认知发展的三个基本过程——同化、顺应、平衡,对于倒数概念来说,学生之前毫无经验,是属于顺应,其实顺应更类似一个质变的过程,有对于知识结构的扩展和修正,会形成一个新的认知图式。
但是本节课的教学难度不大,原因是这个知识点本身是不难的,从形式到本质,需要考虑的问题主要就是0,所以我在教学的时候特别关注了数字0的问题,然后在书本上39页第19题的处理上特别强调了数字1的问题。
从整个概念系统来说,同化和顺应是相互依存的,如:本节课中倒数的概念是顺应,而用到的外围概念是整数、自然数、假分数,我在学习的时候注重对概念本身的解读,数包括自然数和整数,倒数的形式是分数,但不是分数的整数和小数需要先转化为最简分数之后再处理。
在概念的形式实现之后的环节就是对倒数概念的辨析,如:题目a都有倒数,这句话本身是有问题的,但是我们关注的点应该是a这个数的取值范围,是取正整数?负整数?0?非正整数?非负整数?自然数?这里都是学生需要考虑的问题,其实有没有倒数的核心概念就是:0没有倒数,但是对于具体的表现形式是我们需要花时间去思量的问题。
六年级数学上册倒数的认识4
教学目标:
1、 通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2、 使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3、 通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学过程:
一、情境导入,引出问题
1、 谈话理解“互为”。
师:俗话说,在家靠父母,出门靠朋友,一个人在社会上除了亲人之外,也要有朋友,你们有自己的朋友吗?
让一名学生(甲)说出自己的好朋友是谁?(乙)
师:能用一句话表达两人之间的朋友关系吗?还可以怎么说?能说甲是朋友,乙是朋友吗?为什么?
(设计意图)学生对于互为两个字的理解比较难,是教学中的一个难点。在这里,我用你是我的朋友,我是你的朋友这一关系多次转化,在自然中创设情境,让学生有一种生活体验,让学生在生活情境中知道什么是“互为朋友”,这样调动了学生的积极性,让学生在不知不觉中理解了“互为”的含义,分散了教学的难点。
2、 游戏,按规律填空。
吞———吴呆———( ) 3/8 — — —( / )10/7 — — —( / )
(1 )学生观察填空,指名回答,并说出是怎么样想的。
(2 )师:你们能按照上面的规律再说出几组数吗?(学生举例,教师板书)
3、 学生观察板书的几组分数,看看每组中的两个数有什么特点?
同桌讨论交流,然后全班汇报每组中两个分数的特点,教师注意引导。(主要是分子、分母的数字特点和两个分数的乘积方面。)
4、 师:能根据每组中两个分数的特点,给这几组分数起一个合适的名字吗?
教师揭示课题:倒数的认识。
5、 师:看到这个课题,大家想提什么问题?
根据学生回答,选择板书。如:(1 )什么是倒数?(2 )怎么样求一个数的倒数?(3 )认识倒数有什么作用?……
(设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。
二、 合作探究、解决问题
1、 探究倒数的意义。
(1 )观察3/8 与8/3 ,说说哪两个数互为倒数?还可以怎么样说?
(2 )谁能说说10/7 与7/10 中谁和谁互为倒数?也可以怎么样说?
(3 )小组讨论,什么是倒数?
学生独立思考后,组内交流。
全班汇报,教师根据学生的汇报点拨引导。学生可能有的答案是:
A :分子、分母相互调换位置的两个数叫做互为倒数。
B :乘积是1 的两个数叫做互为倒数。
师生共同归纳倒数的意义:乘积是1 的两个数叫做互为倒数。(教师板书)
2、 探究求倒数的方法。
(1 )学习例1 :写出7/8 、5/2 的倒数。
A :学生试写,教师巡视,提醒书写格式。
B :指名回答,教师板书:7/8 的倒数是8/7 ,5/2 的倒数是2/5 。
师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。
C :学生交流求一个分数倒数的方法。
(2 )师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。
A :学生选择一种研究,教师巡视指导。
B :学生交流汇报,教师分别板书一例。
C :引导学生概括求倒数的方法。
(3 )教师引导质疑:0 有没有倒数?为什么?学生讨论释疑。
1 ×( )=1 ,所以1 的倒数是1 。而0 ×( )=1 呢?
1 的倒数是它本身,0 没有倒数。
求一个数(0 除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
三、巩固联系、拓展深化。
1、 下面哪两个数是互为倒数。
4/3 , 7/6 , 8 , 6/7 , 3/4 , 1/8
2、 写出下面各数的倒数。
4/11 , 16/9 , 35 , 15/8 , 1/5
学生在课练本上写出这些数的倒数,指名回答,并说出是怎么样求的,集体评价。
3、 争当小法官,明察秋毫。
(1 )1 的倒数是1 。(2 )所有的数都有倒数。
(3 )3/4 是倒数。(4 )A 的倒数是1/A 。
(5 )因为0.5 ×2=1 ,所以0.5 与2 互为倒数。
(6 )7/5 的倒数是7/2 。
(7 )真分数的倒数都大于1 。 (8 )假分数的倒数都小于1 。
(9 )因为8 -7=1 ,3 ÷3=1 ,所以8 和7 ,3 和3 是互为倒数。
4、 填空。
3/4 ×( )=1 7 ×( )=1
2/5 ×( )= ( )×4= 5/4 ×( )=0.5 ×( )=1
5、 游戏:找朋友。
师:刚才我们在上课时各自说出了自己的好朋友,老师觉得你的朋友太少了,现在我们就在课堂上再找几个朋友吧,愿意吗?
一名学生说出一个数,谁能又对又快地说出这个数的倒数,谁就和这名同学互为好朋友。
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
四、总结反思、评价体验
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
五、布置作业。
《倒数的认识》教学反思:
本节课一开始创设“让学生找朋友”的情境,通过此活动帮助学生理解“互为”的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。
本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的`思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切真理都要由学生自己获得或由他们重新发现,至少由他们重建”。
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
在课后的巩固练习中,我设计了“争当小法官,明察秋毫”、“填空”、“游戏:找朋友”等题型,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
六年级数学上册倒数的认识5
这部分内容是在学习了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。
这部分内容安排了2个例题,教学倒数的意义和求倒数的方法。
1. 例1。
让学生了解倒数的意义,编排了几组乘积为1的乘法算式,通过学生观察、讨论等活动,找出它们的共同特点,导出倒数的定义。
教学建议
(1)要让学生充分观察和讨论,找出算式的共同特点。
(2)给出倒数的定义后,结合定义讨论倒数的特点,特别要理解“互为倒数”的含义,即倒数是表示两个数之间的关系,这两个数是相互依存的,倒数不能单独存在。也可以结合判断题,如“73是倒数”对不对?以加深学生认识。
(3)可以让学生根据对倒数意义的理解,说出几组倒数,看学生是否真正理解和掌握。
2. 例2。
这里是一个图片教学求倒数的方法。教材先安排找倒数的活动,从而初步体验找倒数的方法。接着总结求倒数的方法,分两种情况。求分数的倒数是交换分数的 分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母的位置。最后提出1和0的倒数的问题,让学生思考讨论得到结论。
教学建议
(1)通过找倒数的活动,交流探讨方法。
(2)结合教材给出的数据,讨论归纳方法。如35怎样找到它的倒数?6怎样找到它的倒数?
(3)把互为倒数的数提出来,还剩下1和0。提出问题:它们有没有倒数?倒数是多少?组织学生讨论,说出理由。在讨论的基础上归纳:根据倒数的意义,因为1×1=1,所以1的倒数是1;因为0与任何数相乘都是0,所以0没有倒数。
(4)完成“做一做”,检查对倒数意义的理解和求倒数方法的掌握。
3. 关于练习六的一些习题的说明和教学建议。
第2题是一个活动,可以同桌互说,一个人说出一个数,另一个人说出它的倒数,再交换说。
第3题通过判断对错的活动,加深对倒数的认识。
第(1)题,依据倒数的意义进行判断,是对的`。
第(2)题,两个数互为倒数,而不是三个数,所以不对。
第(3)题,0没有倒数,所以不对。
第(4)题,不一定。大于1的假分数的倒数一定比这个假分数小,而真分数的倒数比这个真分数大。
整理与复习
对本单元的学习内容进行整理与复习。分为两个部分,第一部分以知识整理的形式回顾本单元的主要学习内容,引导复习;第二部分安排练习。
具体内容的说明和教学建议
复习部分
第1题,复习分数乘法的计算方法,呈现分数乘整数、整数乘分数和分数乘分数三道题。可以先由学生独立完成,再说说每道题的计算方法,回忆总结分数乘法的计算方法。做错的找一找错在哪里,然后完成练习七的第1、2、3题。
第2题,运用乘法运算定律进行简便计算。可让学生先独立完成,再说说运用了什么运算定律。然后完成练习七的第4题。
第3题,解决问题。第(1)题,求一个数的几分之几是多少的问题。可让学生画线段图表示数量关系,列式解答,再说说解答的思路。第(2)题是稍复杂的 求一个数的几分之几是多少的。问题,也先要求学生画出线段图表示题意,再列式解答,并交流有什么不同的方法,是怎样想的。然后完成练习七的第5、6题。
第4题,先说说什么叫倒数,再找出各个数的倒数,并说说找的方法。然后完成练习七的第7题。
六年级数学上册倒数的认识6
教学说明:
让学生经历提出问题、自探问题、应用知识的过程,理解倒数的意义自主总结出求倒数的方法。
反思:
本节课中,在探究新知之前,我打破数学教学常规,进行学科整合,借助语文学科与数学学科之间的联系为切入点,由文字构成规律引发学生数学思维火花,把文字构成规律变成数字,进行铺垫。引发学生探究数学的欲望,极大调动学生学习的兴趣。接着设疑引发学生提出问题:关于倒数你想知道些什么?学生提出的问题是:什么是倒数?倒数的意义是什么?倒数有什么特点?学生在探究新知识的同时,能够自己举一些倒数的例子,提出自己的问题,让学生自己发现倒数的一些特点:每组中的两个数相乘的积是1;每组中的两个数的分子和分母的位置互相颠倒;每组中的两个数是相互依存的关系,不能孤立。依据倒数的特点让学生自己举例验证以上发现是否正确。
在争论数字0和1的倒数问题时,我创设情景境,通过两个卡通人物(明明、红红)发生争论 ――0和1都有倒数,0和1都没有倒数,课堂上学生引起了较大的争议,学生没有从分数的角度去发现0不能作为分数的分母,所以产生了0有倒数的念头,再次的小组辩论。得出0不能作除数、0不能作分母。0没有倒数的结论。而1这个数字学生还是会发现1的'倒数就是一分之一,也就是1。在教学求倒数的方法时,学生也能根据已学的知识自主解决,老师只是作为辅助,学生自行总结求倒数的法。但是整数到底有没有倒数?整数怎么样来求倒数?要怎么样把一个整数看成是分母是1的分数,再调换它们的位置。这样开放性题目,学生要经过小组合作才可以填出来,没有办法独立思考。所以,我觉得以后的内容就应该多出一些具有挑战性的题目,以帮助学生更好地理解新知识的应用。
六年级数学上册倒数的认识7
一、教学内容:九年义务教育六年制第九册第二单元《倒数的认识》
二、教材分析:
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
三、教学目标:1.理解倒数的意义,掌握求倒数的方法。
2、能熟练地写出一个数的倒数。
3、结合教学实际培养学生的抽象概括能力。
四、教学重点:理解倒数的意义,掌握求倒数的方法。
五、教学难点:熟练写出一个数的倒数。
六、 教学过程:
(一)、谈话
1、交流
师:我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么联系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的联系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存联系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的相互依存联系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2、导入今天,我们继续来研究数学中具有相互依存联系的现象的有关知识。
(二)、学习新知
对数游戏
1、学习倒数的意义
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数。
师:4是3的4/3,生:3是4的3/4
师:7是15的7/15;生:15是7的15/7。
……
提问;看我们做游戏的结果,你们有没有发现什么?
生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。
生2:两个分数的分子、分母相互调换了位置。
生2:两个分数的乘积是1。
提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数) 出示课题:倒数的认识
提问:那么怎样的`两个数才是互为倒数呢?指导看书。
思考:(1)什么是倒数?满足什么条件的两个数互为倒数?
(2)你能找出互为倒数的两个数吗。请举例
评析:回答问题
理解“互为”的意义。怎样的两个数互为倒数。
找朋友游戏(课前每位同学发一张数字卡片)
练习
(!)出示卡片 (六位同学举着卡片依次站在黑板前)
7/911/41/5086/599
(2)规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队
提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?
3教学求一个数倒数的方法
出示例题:找出下列各数的倒数
2/37/41/591/7/80.4
小组讨论指名板演
提问:1.你是怎么找出2/3的倒数的?
生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3
生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2。
2、你是怎么找出7/4的倒数的?
……
提问:我们怎样才能很快地找到一个数的倒数?为什么?
4、练习请剩下的没有找到朋友的同学继续找倒数
5、讨论:1的倒数是谁?0的倒数呢?
生:1的倒数是1
师:能说明一下理由吗?
生1:因为1与1的乘积还是1。
生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。
师:0的倒数呢?
生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。
生2:因为0与任何数相乘都得0,所以0的倒数是任何数。
生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。
生4:0可以写成0/1,0/1的倒数是1/0。
生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。
6、完善求一个数的倒数的方法
三、巩固练习
(一)填空
1、因为5/3XX/5=1,所以()和()互为();
2、因为15XX/15=1,所以()和()互为();
3.4/7与互为倒数;
4、的倒数是6/11
5、的倒数是2
6.1/8的倒数是
7.1/2/7的倒数是
8.0.3的倒数是
(二)判断
1、得数是1的两个数互为倒数。
2、互为倒数的两个数乘积必定是1。
3.1的倒数是1,所以0的倒数是0。
4、分数的倒数都大于1。
(四)思考
4/5XX)=XX
四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?
五、布置作业
六年级数学上册倒数的认识8
(一)说教材
“倒数的认识”是苏教版第十一册第三单元的内容。本节课是在学习了分数乘法的意义和计算法则、分数乘法应用题的基础上,进行教学的。这部分知识主要为学习分数除法做准备的。它是学习分数除法的关键知识,能否正确理解掌握倒数,决定着学生学习分数除法的水平,因此学习好本节课,是学习分数除法的前提和必要条件。
根据以上对教材的认识和分析,结合学生实际,拟订如下知识目标和教学目标:
知识目标:
1、建立倒数、互为倒数的概念,使学生知道乘积是1的两个数互为倒数。
2、掌握求一个数,尤其是一个分数或整数的倒数的方法。
教学目标:
1、让学生在具体情境中理解倒数的意义,并掌握求倒数的方法。
2、让学生主动参与观察、猜测、交流等活动,经历探索求倒数的方法的过程。
3、培养学生良好的合作意识,具有回顾与分析解决问题过程的意识。
4、感受数学的趣味性和挑战性,获得良好的情感体验。
本课的重难点:理解倒数的意义,求倒数的方法。
(二)说教法、学法
本课我采用了发现式教学法、小组讨论式教学法。在课堂中采取精讲精练、讲练有机结合的模式,给学生足够的时间,充分地让学生自学。我在教学中始终扮演一个引导者,引导学生从事数学活动和交流,引导学生去发现问题,讨论问题,解决问题,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的`自主性,允许学生在探究新知中犯错误,并在修正错误的过程中体会成功,让学生在互动和活动过程中充分地运用自己的能力器官。帮助他们在自主探索活动中真正理解和掌握本节课的数学知识、技能、思想和方法,培养学生学习数学的能力。
学生是课堂的主人,如何体现学生的主人意识,我想在数学课堂教学中,学生应始终在合作中发现问题,在合作中探讨问题,在合作中解决问题。在这一系列的合作中进行恰当的学习活动,有时也能产生思想的碰撞、人格的升华……这样才能体现学生在数学课堂上的主人意识。
(三)说教学程序
我从以下七个方面进行教学设计:
一、课前谈话,渗透互为
在课的一开始,我抓住“互为”二字作文章,在谈话中让学生理解“互相”应该是双方面的,这样学生对马上接触到的“互为倒数”就比较容易理解了。接下来问同学人与人之间有着相互的关系,那么在我们数学中数与数之间是否也有着相互关系,通过回忆因数和倍数的关系,比较自然的过渡到新课的学习中,渗透“互为”这个倒数概念中的关键词语,帮助学生理解“互为”的含义,从而为建构新知扫清语言理解障碍,并为学习新课做了很好的铺垫。
接下来,我直接出示“倒数”一词,先让学生从字面猜测它的意思,勾起学生对倒数的兴趣,让学生对“倒数”主动产生疑问,激发学生解决问题的欲望。
二、自学尝试,理解意义
1、课件出示口算题,在请学生抢答后发现相同点:得数是1,然后再通过分类、猜一猜,发现积为1的两个数有一定的特殊性。充分让学生自学,从而给学生一定的时间去自己发现问题、讨论问题、解决问题。让学生带着问题去思考,带着问题去自学。然后让学生按照“读、思、划”三步认真阅读课本,即一边读书P50,一边思考,并把重点知识或不明白的地方勾画出来。
结合例子说明:3/8和8/3互为倒数,也就是说3/8的倒数是8/3,8/3的倒数是3/8。
2、请学生举例说出互为倒数的两个数,并说理由,充分感知。从而通过比较,得出求一个分数的倒数的方法。
3、抢答题中特意设计了几分之一的倒数是几,引导学生发现整数的倒数。再通过学生一问一答的形式,既自主得出了求一个整数的倒数的方法,又解决了整数中的特殊情况,1和0的倒数的问题。突出了本课的重点。
4、通过寻找字母a和b/a的倒数,让学生学会求含有字母的数的倒数的方法。巩固的0没有倒数的特点。
5、在练习题第二题的设计中,我特意放入了1/6和5/6,0,0.25.让学生再次明确了互为倒数的两个数的条件是乘积为1,小数也有倒数,0没有倒数。
6、第三题找规律是本课的难点,学生已经会求一个数的倒数,但是很难用完整严谨的语言来表达规律。因此我采用小组讨论,再全班讨论的方式,让学生一步步补充、完善,最终得到结论。
7、小结时,又把学生带回到之前他们提出的问题中,让学生根据自己本节课所学到的知识自己回答问题。前后呼应,完全体现学生为主体的特点。
8、课的结尾,我加入了一个对联,让学生体会语文中的“倒数“,感受生活中的有趣现象,激起学生的兴趣。
整堂课,我努力以学生自学为主,不断提供他们讨论,探究的机会,让学生充满兴趣的掌握本课的重、难点。当然,还有很多不足之处,比如练习题的形式过于单一等,希望各位老师批评指教。
六年级数学上册倒数的认识9
《倒数的认识》是在学生掌握了分数乘法的基础上教学的。在这节课中,我抓住了两大主要内容展开教学:1、学习理解倒数的意义。2、学习求一个数的倒数的方法。我以玩文字游戏导入新课,吸引学生的注意力,同时给学生灌输“倒”的想法,把游戏的现象融入到数学当中。在理解倒数的意义时,让学生抓住关键的词语“乘积、互为”来理解,并强调倒数不是孤立的,而是对于两个数来说的。有了文字游戏的导入,学生观察到了互为倒数的两个数分子、分母的位置发生了倒换了,对求真分数和假分数的倒数容易掌握了,因而课堂的氛围很浓,积极踊跃回答问题的同学很多。但对自然数的倒数以及小数、带分数的倒数,大部分学生的思维一下子还转不过弯了,只有极少数的`学生能够说出方法。对于特殊的数1和0,学生基本上能够知道他们的倒数。
这节课需要改进的地方是:求一个数的倒数还有另外一个方法就是一个数乘以另一个数,乘积是1,那另一个数就是这个数的倒数。如5×( )=1,括号里的数就是5的倒数。这个方法在这节课中,我没有明显强调出来,还不能让学生真正去理解倒数的意义。因此,知识与技能方面的目标还不能完成达到。
六年级数学上册倒数的认识10
教材分析:
这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。
设计理念:
本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程。在求一个数的倒数时,让学生先学后教,激发学习热情,并培养学生观察、归纳、推理和概括的能力。
教学目标:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
能力目标:
培养学生观察、归纳、猜想、推理和概括的能力。
情感目标:
提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。
教学重点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学难点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学过程:
一、课前谈话突破难点
1、谈话——蕴含“两个”,突破“互为”
师:老师也愿和六(1)班的同学成为朋友,你们愿意吗?(愿意)那老师就是你们的…(朋友),你们是老师的…(朋友)。你们和老师互为朋友。(指板书:互为)
二、导入揭题,引导质疑
师:其实在我们的数学中也有类似的情况。今天这节课就让我们一起来发现数学中的类似问题。揭题——(板书:倒数的认识)
师:看到“倒数”这个数学新名词,你的脑子里产生哪些问题。
预设:什么是倒数?怎样求倒数?……
这节课一起来探究这些问题?
三、创设活动情景,理解概念——“倒数是什么”
师:我们刚刚研究了分数乘法,老师想了解大家掌握的怎么样?请看计算。
1、在分类中理解“是什么”
①5/8×8/5②0.25×4③3/4+1/4
④1.6—3/5⑤13/7×7/13⑥3/2×6/5×5/9
计算后你有什么发现?
师:如果请你将这六个算式分成两类,你准备怎么分?
(学生汇报:乘积是1。)[适当处板书:乘积是1]
归纳总结:分类的.标准不同,得到的答案也不同,今天我们就研究这一类的算式。
师:这三个算式有什么共同的特征吗?
预设:乘积是1。
2、举例感悟“怎么做”
师:你还能举出这样的例子吗?
还能举出与这些算式不同的例子吗?还能举出不同的算式吗?
归纳总结:像刚才举的这些例子,他们都有一个共同的特点!(乘积是1)在数学上“乘积是1的两个数互为倒数”。如5/8×8/5=1,我们就可以说5/8和8/5互为倒数,还可以怎么说?如我们表述朋友的关系。
5/8倒数是8/5,8/5倒数是5/8。
师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
②0.25×4这两个数的关系可以怎么说?请您告诉你的同桌。
(学生活动)
⑤13/7×7/13
3、在思辨中深入理解
师:能说3/4和1/4互为倒数吗?为什么?
师:能说3/2、6/5和5/9互为倒数吗?为什么?
四、运用概念,探究方法——“怎样求倒数”
过渡:大家对倒数理解的很不错,那么我给你一个数你能找出它的倒数吗?
(投影,出示例2)
1、求下面各数的倒数
3/5267/20.610.250
学生尝试。
回报交流。
师:这组数中,你最喜欢求哪些数的倒数?为什么?
预设:
生1:我最喜欢求分数的倒数,因为把分数的分子、分母调换位置,它们的乘积就是1。很容易,所以我喜欢求。
生2:我最喜欢求1的倒数,因为1的倒数可以写成分数,分子、分母调换位置还是,1的倒数就是1。很有趣,所以我喜欢求1的倒数。生:进行计算。
师:这组数中,你最不喜欢哪个数的倒数?
预设:
生1:我最不喜欢求0的倒数,因为0如果写成分数,要是调换分子、分母的位置就是,0不能作分母(0不能作除数)。0好像没有倒数。
生2:再说0乘任何数都等于0,也不等于1呀,0肯定没有倒数。
师:那你是怎样求26的倒数的呢?
你是怎样求一个小数的倒数的呢?
归纳总结:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
2、强调书写格式
师:刚才老师看到有学生是这样写的,可以吗?(3/5=5/3)
归纳总结:互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。
先说说下面每组数的倒数,再看看你能发现什么?
(1)3/4的倒数是()(2)9/7的倒数是()
2/5的倒数是()10/3的倒数是()
4/7的倒数是()6/5的倒数是()
(3)1/3的倒数是()(4)3的倒数是()
1/10的倒数是()9的倒数是(
nbsp;1/13的倒数是()14的倒数是()
由学生说出各数的倒数。
师:请你仔细观察,看能从中发现什么,发现得越多越好。
师:小组间可以先互相说一说。
汇报:
预设:
生1:我从第一组中发现真分数的倒数都是假分数。
生2:我从第二组中发现假分数的倒数是真分数或者假分数。
生3:真分数的倒数都小于1,假分数的倒数大于1。
3、填空:
7×()=15/2×()=()×0.25=0.17×()=1
六年级数学上册倒数的认识11
[教学内容]:倒数的认识
[教材简析]
学生在前几课时已经学过了分数乘法,会计算分数乘整数,分数乘分数的计算方法,本课以分数乘法为基础,通过计算认识“乘积是1的两个数互为倒数”这一概念,接着教学求倒数的方法,练习六通过一系列的练习,进一步巩固倒数的概念及求一个数的倒数的方法。
[学情简析]
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。内容看似简单,但对学生来说比较抽象,难理解。教材首先让学生了解倒数的意义,编排了几组乘积为1的乘法算式,通过学生观察、讨论等活动,找出他们的共同特点,从而导出倒数的定义。例1教学求倒数的方法,从让学生自主找一个数的倒数的活动中,体验并概括求一个数倒数的方法,最后提出1和0的倒数问题,让学生讨论得出结论。
[教学目标]
1.在举例、观察、比较、分类、归纳的过程中帮助学生理解倒数的意义。
2.通过推理、探究,帮助学生掌握求一个数的倒数的方法。
3.通过学习使学生体会到学习数学的兴趣,发展学生的数学思维能力和质疑的习惯。
[教学重点]
倒数的意义与求法。
[教学难点]理解“互为”的意义,明确倒数只是表示两个数间的关系,而不能单独的说某个数是倒数。
[教学过程]
一、复习旧知,作好铺垫
1、创设情景激趣
师:请同学们仔细观察,(课件演示风景图片)
师问:你发现图画上的景物有什么特点?
生:这些图画都倒过来了,出现了倒影。
师:是啊,这些图片有了倒影,显得更加漂亮了。在我国的.文字里,也有很有趣的汉字,让我们一起找找看。(课件演示有趣的汉字)
师:你们发现汉字的特点了吗?
生:这些汉字上下交换位置以后,都成了新的汉字。
师:今天我们要研究学习倒数,一个数是不是把它倒过来就是它的倒数呢?
板书:倒数
[设计意图:学生已经学过分数的乘法,会计算分数乘整数、分数乘分数,因此,在课始,让学生通过完成练习十的第1题,既可以复习分数乘法,也为引出倒数的概念和为求一个数的倒数做好准备。]
二、合作探究,揭示倒数的意义。
1.学生交流自己写的乘积是1的两个数
(估计学生写的数中,两个数都是分数的较多,也可能有分数与小数、分数与整数、小数与小数、小数与整数的等。如:
师:你认为倒数是怎么样的数?(估计学生可能会提出:倒数应该是两个数之间的关系;称为“倒数”是否与“颠倒”有关,怎么求倒数……)
[设计意图:通过学生自己举例两个乘积是1的不同的数,引出“倒数”的概念--乘积是1的两个数互为倒数,知道了倒数的概念,学生一定会产生“倒数”究竟是些什么样的数,怎么求一个数的倒数等疑问。学生有了疑问,才会有探索的动力,使枯燥的求倒数的方法成为学生内在的需要而主动地进行研究。]
三、观察比较,探讨求倒数的方法。
探讨研究黑板上板书的几组数。
六年级数学上册倒数的认识12
《倒数的认识》这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。
本节课我在设计教学时力求充分发挥学生学习的.主动性和积极性,引导学生自主探索与交流合作中再现知识发生的过程,提高学生的观察分析和概括归纳的能力,实现知识技能与学生智能的同步发展。通过这节课的实际教学,结合新课标,也给了我不少启示。
启示一:处理好“教教材”和“用教材”的关系:
1、在课的导入部分,联系学生熟悉的生活情景,由倒影和一些有趣的文字引出本节课所要探究的问题――倒数,从形象直观上感受颠倒位置,既激发了学生的探究兴趣,为学生学习新知识做了充分的准备,为学生较好理解倒数的意义做了铺垫
2、变例题教学为学生自学课本,发现求一个数的倒数的方法,然后通过举例,检查学生的掌握情况,再总结出求一个数的倒数的方法。
3、丰富练习的形式。在充分利用教材的练习同时,我还适当地补充了练习的内容,使学生在练习中巩固,在练习中提高。比如设计的“比较大小”,在比较大小之后,让学生找找其中的规律,为接下来的分数除法做铺垫。“猜一猜“,不仅用到了倒数的知识,也联系到前面学的分数乘法应用题。
启示二:相信学生,处理好扶与放的关系:
1、给学生独立思考的时间,相信学生能具有独立思考的能力,教学中每一个问题的提出,要使学生不是坐等听别人讲,而是能养成先自己积极思考的习惯。
2、给学生合作学习的机会;当学生有困惑时,教师可以充分发挥学生集体智慧,引导学生小组合作、互相学习、互相交流,在合作中交流、在合作中提高、在合作中解决困惑。在教学中,我对于探求“整数有没有倒数”、“0和1有没有倒数”、“小数有没有倒数”这几个环节,充分发挥学生合作交流的作用,去共同解决问题。
六年级数学上册倒数的认识13
一、说教材
本课的内容是九年义务教育数学第十一册第一单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
基于以上的认识,遵循“知识与技能的学习必须以有利于其它目标(数学思考、解决问题、情感态度)的实现为前提”的重要理念,确定本课的教学目标:
1、让学生在具体情境中理解倒数的意义,并掌握求一个数倒数的方法,会求一个数的倒数。
2、让学生主动参与观察、猜测、交流等活动,经历探索求倒数的方法的过程。
3、培养学生良好的合作意识,具有回顾与分析解决问题过程的意识。
4、感受数学的趣味性和挑战性,获得良好的情感体验。
重点:倒数的求法。
难点:带分数、小数的倒数求法。
关键:理解倒数的意义。
二、说教法
本课我采用了发现式教学法、小组讨论式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探究新知中犯错误,并在修正错误的过程中体会成功,特别是注重情境的创设,如创设“取名称”、“找朋友”、“我来试试看”、“我来当名医”、“火眼金睛”等情境,以平等宽容的态度激起学生的探究热情,让学生在互动和活动过程中充分地运用自己的能力器官。
三、说学法
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我采用小组合作形式组织教学。这样,一方面可以让学生尝试发现,体验到创造的过程;另一方面,也可以增强学生的合作意识,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,在互动中迸发出智慧的火花。
四、教学程序设计
在课前准备阶段,我抓住“互为”二字作文章,先安排这样一个课前活动。
1、联系语文中的反义词的知识,举倒如:“黑”的反义词是什么?(白)“正”的反义词是什么?(反、倒)
2、用“互为”造句。举倒如:“黑和白互为反义词”,这句话还可以怎样表达?(黑是白的反义词或白是黑的反义词)
3、思考:能否说“黑是反义词,白是反义词”?为什么?
通过以上的活动帮助学生理解“互为”的.含义,从而为建构新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。
(一)激趣引入,导入新课
1、请说出结果是1的算式(微机显示),如:3/8×8/3=1
5-4=19÷9=1等等。
2、观察、分类:学生可能会以加、减、乘、除或和、差、积、商是1为标准进行分类。
3、思考:结果是1的两个数有何特点?你能根据它们的特点给它们取个名称吗?可能会有以下回答:
①加法中两个数的和是1,名称:补数…
②减法中两个数相差1,名称:邻数…
③除法中的两个数是同一个数,名称:镜数…
④乘法中的两个数(微机只演示积为1的一组数,让学生再观察),名称非常好听,又很符合它们的特点:数学上把乘积是1的两个数叫做互为倒数。
4、顺势揭题:我们今天就来研究倒数(出示课题),以上让学生自己提供教学材料,能迅速激发学生的探索兴趣,为探求新知作好心理上的准备。在取名称的过程中,学生需要观察两个数存在的特点,这样就有效地激发学生的观察兴趣。
(二)举例辨析,理解意义。
分三步进行:
一是微机出示:
(1)什么是倒数?满足什么条件的两个数互为倒数?
(2)你能找出互为倒数的两个数吗?请举例。
让学生按“读、思、划”三步阅读课本,即一边读书P19,一边思考,并把重点知识或不明白的地方勾画出来。结合例子说明:3/8和8/3互为倒数,也就是说3/8的倒数是8/3,8/3的倒数是3/8。
二是同桌互说,举例说出互为倒数的两个数,并说理由,充分感知。
三是让学生回答,进行交流:怎样理解“互为”的含义?能说某数是倒数吗?(举例如:“小明和小华是好朋友”,能说成“小明是好朋友”或“小华是好朋友吗”?)
此处在学生自学的基础上,让学生举例说明倒数,积累感性材料。引导学生重点理解“乘积是1”而不是“和(差、商)是1”,理解“互为”是指两数的依存关系。
(三)观察比较,归纳方法
该环节让学生寻找求倒数的方法,注意先独立思考,再合作交流。具体分为三个层次:
第一层次:创设问题情境:“找朋友—好朋友,手拉手”,请把互为倒数的两个数用线连起来。微机显示:
7/911/662/39/7、6/11、1/6练习后,质疑“为什么2/3孤零零地站在哪里?”
学生回答后,再激趣:“大家有勇气探索求倒数的方法吗?
第二层次----我来试试看:我能行
写出11/6、1/5、9和15/8的倒数(微机显示)
提示:如有困难,可先自学课本,或请教你的好朋友,找不同层次的学生回答。
第三层次----回顾、交流
1、小组交流:(1)你是怎样求一个数的倒数的?
(2)互为倒数的两个数相等吗?怎样表示它的结果?
2、全班交流,突出重点:(1)互为倒数的两个数有何特点?
(2)强调:到数可用“—”表示,不能用=表示。
(3)重点讨论“9”和“15/8”的倒数求法过程,动态演示成:(见演示稿)
此环节引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切真理都要由学生自己获得或由他们重新发现,至少由他们重建。”
(四)辨析比较,弄清特例
1、微机显示:你最喜欢下面哪个数的倒数?为会么?(见演示稿)
设计这样一个针对性练习,既突出本课的重点,又有利于突破难点;既有对刚刚学过的倒数求法的运用,又使学生产生新的认知冲突:1的倒数为什么是它本身?0有没有倒数?为什么0没有倒数?这样学生在宽松的氛围里,勇于发言、敢于辩论。
2、数学诊所:“我来当名医”——有病就治。
(1)互为倒数的两个数的乘积一定等于1。()
(2)2和它的倒数的和是5/2。()
(3)假分数的倒数是真分数。()
(4)小数的倒数大于1。()
(5)在8-7=1和3÷3=1中,8和7,3和3是互为倒数的。()
(6)a的倒数是1/a。()
本设计围绕易混易错之处,让学生用手势判断,进行辨析,训练说理能力,同时学生的思维也得到训练。
(五)回顾、质疑,自我评价。
通过这节课,你学到哪些知识?先闭着眼睛想一想,再同桌的同学互相说一说。
该环节的设计,是让学生在互动中互相启发,共同发展。“自主探究”旨在改变教与学的方式,教师的教是为学生的自主学习、主动探究创造条件,是为学生的独立思考,动手实践,自主探究等合作交流引路搭桥。是让学生真正在探究学习中发展。
六年级数学上册倒数的认识14
一、说教材
《倒数的认识》是人教版小学数学教科书第十一册的内容。教材首先出示乘积是1的分数乘法,从而引出分数的含义,并举例说明倒数的特点。例1教学求一个数的方法。从教材的内容来看,比较简单。数学知识的联系性很广泛,比如本册将要学习的《分数除法》就要运用到倒数的知识。
本课的教学目标
教学目标
1.理解和掌握倒数的意义.
2.能正确的求出一个数的倒数.
3.培养学生的观察能力和概括能力.
教学重点:认识倒数并掌握求倒数的方法
教学难点:小数与整数求倒数的方法
在于让学生在经历中体验、在做中发现、在活动中理解倒数的意义,能正确的求一个数的倒数,渗透辨证唯物主义关于事物都是普遍联系观念的启蒙教育。
教材内容在编排上没有什么特别之处,
但教学重点难点比较突出,求1、0、小数、带分数的倒数是本课的重点,也是本课的难点。
二、说教法
基于教材内容比较单调,那么只有在教法上体现新、奇、特才能激发学生的学习兴趣,才能让学生想学,要学。
首先,根据小学生一般是从具体的形象思维逐步向抽象的逻辑思维发展的思维特点,我将在教学中联系小学生熟悉的身边的实际,使抽象的内容直观化,同时把要解决的问题通过联系实际,帮助学生架起由感性认识到理性认识的桥梁,可以达到理解掌握新知识,培养学生兴趣的目的,同时也体现了数学的趣味性。
比如让学生先理解“互相成为好朋友”就是你是我的朋友,我是你的朋友的意思,朋友必须建立在两个人的基础上的,那么有了这样具体形象思维的理解,学生对倒数有互相依存的特点这一比较抽象的概念就有了比较直观的理解了。
其次,我将在教学中始终扮演一个引导者,引导学生从事数学活动和交流,引导学生去发现问题,讨论问题,解决问题,帮助他们在自主探索活动中真正理解和掌握本节课的数学知识、技能、思想和方法,培养学生学习数学的能力。
比如教材中只是简单的出示几个乘积是1的分数乘法,然后就引出倒数的含义、特点,学习怎样求一个数的倒数。其实这样的导入根本不能激发学生学习的兴趣,还有点牵着学生鼻子走的味道。我在教学中首先让学生写出等于1的算式,看看自己能写出几种不同类型的式子,然后学生汇报、分类,要让学生自己说出等于1的乘法算式有特色,有怎样的特色,并且让学生自己给这些有特色的算式中的因数起个名。这样学生就对倒数的意义中的“乘积是1的两个数”有了彻底的理解。
三、说学法
学生是课堂的主人,如何体现学生的主人意识,我想在数学课堂教学中,学生应始终在合作中发现问题,在合作中探讨问题,在合作中解决问题。在这一系列的合作中进行恰当的学习活动,有时也能产生思想的碰撞、人格的升华……这样才能体现学生在数学课堂上的主人意识。
四、说教学思路
本课主要围绕“导入、探究、深讨、练习、小结”四个环节进行。
(一)谈话导入,初步感知。
和学生谈谈“老师和大家互相成为好朋友的”意思,在谈话中让学生理解“互相”应该是双方面的,这句话可以理解成“老师是你的朋友”,“你是老师的'朋友”。这样学生对马上接触到的“互为倒数”就比较容易理解了。接下来告诉同学人与人之间有着相互的关系,同样在我们数学中数与数之间也有着相互关系,比如8是4的倍数,4是8的因数,比如2和3是互质关系,等等,今天我们要继续研究两个数之间的有趣关系。这样就比较自然的过渡到新课的学习中。
(二)经历体验,探究发现。
让每一个学生写几个等于1的算式,并且小组合作进行分类,分类时大部分学生可能都会以加、减、乘、除来分类,(也有可能会出现其它情况的分类方法)然后让学生找出比较有特色的一类,当学生找出乘法算式等于1的这一类的比较有特色时,要及时让学生说出它们的特色体现在哪里,再让学生写出几个和这些算式类似的算式,根据特点,给它们取名字。由此引出课题和倒数的意义。
(三)加强合作,深入探讨。
以小组为单位,找出还有哪些数有倒数,怎样来求这些数的倒数。这一环节主要解决的问题是怎样求整数、带分数、小数的倒数,要让学生自己总结出求带分数、小数的倒数必须要先变形,再换位。在探讨中,如有学生提出1和0的倒数,那么要作为重点进行研究,总结出:1的倒数是1,0没有倒数。如没有学生提出,教师可稍加提示,比如:有没有哪些数的倒数是它本身呢?是不是所有的数都有倒数呢?
(四)加强练习,巩固提高。
本节课的练习形式多样化,主要有合作练习和独立练习两种形式,在练习中碰到的问题及时解决。
(五)课堂小结,谈谈感受。
让学生谈谈上了这堂课的感受,这堂课最让你感到高兴的是什么?最让你值得自豪的是什么?要启发学生说出自己的真实感受,这既是课堂小结,同时也注重了对学生的人文培养。
六年级数学上册倒数的认识15
教学目的:
使学生理解倒数的意义,掌握求倒数的方法。
教具准备:
将复习题写在小黑板上。
教学过程:
一、复习
出示复习题,让学生口算各题。
(1)3/8×2/3= 3×1/3= 7/15×15/7= 1/80×80=
(2)3/8×1/3= 3/5×1/3= 7/15×5/7= 1/80×80/93=
二、新课
1、教学倒数的意义
教师:“上面的两组题有什么不同?”(第一组每个算式中两个数相乘的积都是1,第二组每个算式中两个数相乘的几不是1。)
教师:“像第一组这样,乘积是1的两个数叫做互为倒数。”
教师举例说明:3/8和8/3互为倒数,就是3/8的倒数是8/3,8/3的倒数是3/8。
教师:“倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一个数的倒数,不能孤立地说某一个数是倒数。”
教师:“例如3/8是倒数,能不能这样说?”(不能)
教师再强调倒数是对两个数来说的。
然后让学生试着说一说第一组中其他3个算式中两个数的关系,说的时候,注意让学生说出“互为倒数”,同时让学生明确谁是谁的倒数。
教师:“谁还能举出几组两个数互为倒数的例子?”
多让学生说一说,并让其他学生根据倒数的意义来检验是不是正确。
2、教学求倒数的方法
(1)出示复习题的第一组算式。
教师:“观察互为倒数的一组数的分子、分母有什么特点?如果给你一个数你能说出它的倒数吗?”让学生适当讨论,并对发现的规律进行归纳、使学生明确:互为倒数的两个数的分子、分母是互相调换位置的、
(2)出示例题
教师:“怎样找出3/5的`倒数呢?”
引导学生说出:“只要把3/5的分子、分母调换位置就是3/5的倒数,即:3/5的倒数是5/3
教师板书:
分子、分母调换位置
3/5 ─────────→5/3
7/2的倒数就可以让学生自己写、
教师接着问:“自然数3的倒数是多少?3可以看成分母是几的分数?”(3可以看成分母是1的分数、)
“那么3的倒数怎样求?”(把分子、分母调换位置,3的倒数就是、)
教师:“任意一个自然数的倒数应该怎样求?”(一个自然数的倒数就是以这个自然数作分母以1作分子的分数、)
接着问:“是不是所有的数都有倒数?什么数没有倒数?”(0没有倒数、)
“0为什么没有倒数?”(因为0不能作分母,所以0没有倒数、)
教师:“请大家总结一下求一个数的倒数的方法、”让学生多说一说,教师注意提醒学生把0排除在外、最后归纳出书上的结语、
2、做教科书第34页的“做一做”
学生独立解答,教师巡视,了解学生掌握的情况,对学习有困难的学生进行个别辅导、集体订正时,有意识地让学习有困难的学生说一说是怎样想的、
三、巩固练习
1、做练习五的第1题、
学生独立填数,教师巡视,集体订正、对于学习有困难的学生,教师可以适当提示,如:“什么样的两个数相乘的积是1?那么,要填的应该是什么数?”
2、做练习五的第2题、
学生先独立找,教师巡视,看学生找得对不对,存在什么问题、集体订正时,可以让学习比较好的学生说一说是怎样找的、使学生明确,根据倒数的意义,只要看哪两个数的乘积是1,哪两个数就互为倒数、
四、小结
教师:“今天我们认识了倒数,请同学们说一说你们知道了倒数的那些知识?”
五、布置作业
练习五的3、4、9题。
【六年级数学上册倒数的认识】相关文章:
《倒数的认识》08-19
《倒数的认识》[热门]08-19
《倒数的认识》教学实录03-10
《倒数认识》教学实录03-13
《倒数认识》教学实录(集合)03-13
数学六年级上册期中检测卷10-23
小班数学活动:认识前后10-14
六年级上册08-13
初三九年级数学上册03-08