阶乘的整数分解 fzu1753 -电脑资料

电脑资料 时间:2019-01-01 我要投稿
【www.unjs.com - 电脑资料】

    题意:给T个组合数的最大公约数,

阶乘的整数分解 fzu1753

    将每个组合数的素数分解式求出来,把每个素数的最小次数乘起来就是最大公约数。组合数可以写成阶乘的形式,然后利用阶乘的整数分解就可以得到组合数的整数分解。

    代码:

#include<cstdlib>#include<cctype>#include<cstring>#include<cstdio>#include<cmath>#include<climits>#include #include<vector>#include<string>#include<iostream>#include<sstream>#include<map>#include<set>#include<queue>#include<stack>#include<fstream>#include<numeric>#include<iomanip>#include<b>#include<li>#include<stdexcept>#include<functional>#include<utility>#include<ctime>using namespace std;#define PB push_back#define MP make_pair#define REP(i,x,n) for(int i=x;i<(n);++i)#define FOR(i,l,h) for(int i=(l);i<=(h);++i)#define FORD(i,h,l) for(int i=(h);i>=(l);--i)#define SZ(X) ((int)(X).size())#define ALL(X) (X).begin(), (X).end()#define RI(X) scanf("%d", &(X))#define RII(X, Y) scanf("%d%d", &(X), &(Y))#define RIII(X, Y, Z) scanf("%d%d%d", &(X), &(Y), &(Z))#define DRI(X) int (X); scanf("%d", &X)#define DRII(X, Y) int X, Y; scanf("%d%d", &X, &Y)#define DRIII(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z)#define OI(X) printf("%d",X);#define RS(X) scanf("%s", (X))#define MS0(X) memset((X), 0, sizeof((X)))#define MS1(X) memset((X), -1, sizeof((X)))#define LEN(X) strlen(X)#define F first#define S second#define Swap(a, b) (a ^= b, b ^= a, a ^= b)#define Dpoint  strcut node{int x,y}#define cmpd int cmp(const int &a,const int &b){return a>b;} /*#ifdef HOME    freopen("in.txt","r",stdin);    #endif*/const int MOD = 1e9+7;typedef vector<int>VI;typedef vector<string>VS;typedef vector<double>VD;typedef long long LL;typedef pair<int,int>PII;//#define HOMEint Scan(){	int res = 0, ch, flag = 0;	if((ch = getchar()) == '-')				//判断正负		flag = 1;	else if(ch >= '0' && ch <= '9')			//得到完整的数		res = ch - '0';	while((ch = getchar()) >= '0' && ch <= '9' )		res = res * 10 + ch - '0';	return flag ? -res : res;}/*----------------PLEASE-----DO-----NOT-----HACK-----ME--------------------*/long long int prime[100000+5];int vis[100000+5];int cnt;void getprime(){   cnt=0;    for(int i=2;i<=100000;i++)        if(!vis[i])    {        prime[cnt++]=i;        for(int j=0;j<cnt&&prime[j]<=100000 5="" b="" cnt="0;" i="2;i<1e5+5;i++)" int="" j="i" long="" n="n/p;" res="0;" return="" sum="0;" void="">>=1;    }    return res;}long long int mypow(long long int a,long long int b){    long long int res=1;    while(b)    {        if(b&1)            res=mymul(res,a);        a=mymul(a,a);        b>>=1;    }    return res;}int res[101000];int main(){int t;Getprime();while(RI(t)!=EOF){    int n[160],m[160];    REP(i,0,cnt)    res[i]=INT_MAX;    int bound=INT_MAX;    REP(i,0,t)    {        RII(n[i],m[i]);        bound=min(bound,n[i]);}    long long int ans=1;        for(int j=0;prime[j]<=bound;j++)        {        for(int i=0;i<t;i++) int="" pre="" return="" tmp="cal(n[i],prime[j]);" tmp-="cal(m[i],prime[j]);"></p><p>    版权声明:本文为博主原创文章,未经博主允许不得转载,

电脑资料

阶乘的整数分解 fzu1753》(https://www.unjs.com)。</p></t;i++)></cnt&&prime[j]<=100000></int,int></double></string></int></ctime></utility></functional></stdexcept></list></bitset></iomanip></numeric></fstream></stack></queue></set></map></sstream></iostream></string></vector></climits></cmath></cstdio></cstring></cctype></cstdlib>

最新文章