关于分数的意义教案范文汇编八篇
作为一位杰出的教职工,就有可能用到教案,教案有助于顺利而有效地开展教学活动。那么什么样的教案才是好的呢?下面是小编为大家收集的分数的意义教案8篇,欢迎阅读,希望大家能够喜欢。
分数的意义教案 篇1
教学目的:
1.使学生理解分数除法的意义与整数除法的意义相同。
2.学会分数除以整数的计算方法。
教具准备:教师准备10个半块月饼的教具。
教学过程:
一、复习
1.举例说明整数除法的意义是什么?
2.根据乘法算式13438=5092,写出相应的两个除法算式。
3.举例说明分数乘以整数的意义和一个数乘以分数乘法的意义各是什么?
以上复习题可以指名回答。
二、新课
1.教学分数除法的意义。
教师出示5个半块月饼的教具,提问:
(1)每人吃半块月饼,5个人一共吃多少块月饼?怎样列式?得多少?
(2)两块半月饼,平均分给5人,每人分得多少块月饼?
教师出示两块半月饼,将它们平均分成5个半块月饼。要求学生按照教具的演示过程列式、计算。
(3)两块半月饼分给每人半块,可以分给多少人?
教师让学生到黑板前进行教具演示,再列式计算。
教师让学生观察、比较上面3道题中算式的已知数和得数,再回答下列问题:
(1)第一个算式已知什么?求什么?用什么方法计算?(已知两个因数: 和5,求出它们的积为 ;用乘法计算。)
(2)第二个算式呢?(已知积是 和一个因数是5,求出另一个因数是 ,用除法计算。)
(3)第三个算式跟上面哪一个算式是类似的?(跟第二个算式是类似的,也是已知积是 和一个因数是 ,求出另一个因数是5,用除法计算)
教师:分数除法的意义是什么?它跟整数除法的意义一样不一样?(分数除法的'意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。)
2.做教科书第30页做一做中的题目。
教师让学生自己读题、做题,做完后要问学生是怎样应用乘法算式和分数除法的意义来填写除法算式的得数的?
3.教学分数除以整数。
教师出示例1:把 米铁丝平均分成2段,每段长多少米?教师:根据题意需要用什么运算来求出得数?并列出算式。(应该用分数除法来做,算式是 2。)
教师:这个算式的含义是什么? 米是几个 米?应该怎样计算?试试看。(表示把 米平均分成2段。 米是6个 米,实际上是把6个 米平均分成2份,求每份是多少米?可以列出如下的算式(教师板书)。)
教师:说一说分数除以整数可以怎样计算?(分数除以整数可以用分数的分子除以整数。)
教师:把 米平均分成2段,求每段是多少,还可以怎样计算?能不能把它转化为已学过的算法来算?(把 米平均分成2段,求每段是多少米?可以看作是求 米的 是多少米?可以用乘法计算。)
教师:把 米铁丝平均分成4段,每段长多少米?用两种方法计算。(让学生自己计算,指名两个学生板演。)
做完后,让学生讨论,就这道题来说,哪种方法可行?哪种方法不可行?为什么?
分数的意义教案 篇2
课题一:(一)
教学要求 ①使学生了解分数的产生,理解,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。②培养学生抽象概括能力。③感受知识来源于实践,又服务于实践的观点。
教学重点 理解。
教学用具 教材第84~85页有关的投影片、线段图等。
教学过程
一、创设情境
1.提问:①把6个苹果平均分给2个小朋友,每人分得几个?(3个)②把一个苹果平均分给2个小朋友,每人分得多少?(每人分得这个苹果的 )。
2.指定一名学生用1米长的直尺量一量黑板的长度是多少米。(比3米长,比4米短)。
3.揭示课题
在实际生产和生活中,人们在测量和计算时,往往得不到整数的结果,在这种情况下就产生了分数。究竟什么叫分数呢?这节课我们就来学习。
二、探索研究
1.学生回忆:我们已经学过,把一个物体或一个计算量单位平均分成若干份,表示这样的一份或几份的数叫做分数。例如:
(1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?
(2)出示正方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的3份呢?( 、 )
(3)出示线段图提问:把一条线段平均分成5份,这样的1份是这条线段的几分之几?这样的4份呢?
如果把1分米的长度平均分成10份,这样的1份是它的几分之几?7份呢? 表示什么?
2、进一步认识单位1。
以上都是一个物体、一个计量单位看作一个整体,我们也可以把许多物体看作一个整体,如4个苹果、一批玩具、一个班的学生等。例如:
(1)出示课本第86页的苹果图。提问:把4个苹果平均分成4份,一个苹果是这个整体的几分之几?
(2)出示熊猫图。提问:把6只熊猫玩具看作一个整体,平均分成3份,一份是这个整体的几分之几? 表示什么?
(3)练习:说出下图中涂色的部分各占整体的几分之几。
● ●
●○○○○○ ● ●
●○○○○○ ● ●
● ○
● ○
● ○
3.揭示。
(1)观察以上教学过程 所形成的板书。
一个物体
计量单位 单位1
一些物体
告诉学生:像这样表示一个物体、一个计量单位或是许多物体组成的一个整体,都可以用自然数来表示,通常我们把它叫做单位1。(板书:单位1)
(2)反馈。①在以上各图中,分别是把什么看作单位1?② 、 、 各表示什么意义?③议一议:什么叫做分数?
(3)概括并板书。把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。
4.练习。练习十八第1、2、3题。
5.教学分数各部分名称、分数单位。分数的读、写法。
(1)教师任意写出几个分数,让学生说出分数各部分的名称。
(2)阅读课本第85页最后一段并思考:一个分数中的分母、分子各表示什么?
(3)认识分数单位,初步了解分数单位的特点。
练习:① 的分数单位是,它有个 。
② 的分数单位是,它有个 。
③个 是。
④ 是个 。
(4)想一想:读、写分数的方法是怎样的?
读作 ,表示 个 。
读作 ,表示有 个 。
三、课堂实践
1. 表示把平均分成份,表示这样的份的数。
2. 读作,分数单位是,再添上个这样的单位是整数1。
四、课堂小结
1、什么叫做分数?如何理解单位1?
2、什么是分数单位?分数单位有什么特点?
五、课堂作业
练习十八第5、6题。
课题二:(二)
教学要求 ①使学生进一步理解及分数单位,并能正确地应用。学会用直线上的点表示分数。能联系,正确解答求一个数是另一个数的几分之几。②进一步培养学生的抽象概括能力。③渗透数形结合思想。
教学重点 理解。
教学过程
一、 创设情境
1.用分数表示图中阴影部分。
▲▲ ▲▲
△△ ▲▲
2.口答:什么是分数?如何理解单位1?
3.填空。
是个 。 的分数单位是
7个 是。 的分数单位是
二、揭示课题
出示学习内容及学习目标。板书课题:。
三、探索研究
1.认识用直线上的点表示分数。
分数也是一个数,也可以用直线(数轴)上的点来表示。
(1)认识用直线上的点表示分数的方法。
①画一条水平直线,在直线上画出等长的距离表示0、1、2。
②根据分母来分线段,如果分母是4,就把单位1平均分成4份。如: 、 :
0 1 2
(2)提问:如果要在直线上表示 ,该怎样画?启发点拨。
①先画什么?再画什么?
②应把0~1这一段平均分成几份?如果分母是8呢?分母是10呢?
③ 应用直线上的哪一个点来表示?
(3)如果要在这条直线上表示分母是10的分数,该怎么办?
这条直线上0~1之间的第七个点表示的分数是多少?
2.练习。
(1)教材第87页下面做一做的第2题。
(2)用直线上的点表示 、 、 、 。
3.教学例1。
(1)指名读题,帮助学生理解题意。
(2)出示讨论题,同桌讨论。
①这题中把什么看作单位1?
②1人占这个整体的几分之几?
③5人占这个整体的几分之几?
(3)汇报讨论结果,板书答语。
(4)小结分析思路。口答这类求一个数是另一个数的几分之几的题目时,一般要根据先找单位1是几,就是分母平均分成几份,其中1份是分数单位,再看有几个这样的分数单位,就是几分之几。
4、练习。教材第88页的做一做。
四、课堂实践
1.教材第87页的做一做。
2.用直线上的点表示 下面的分数: 、 、 、 、 。
3.食堂有一批面粉,吃了45袋,还剩28袋,吃了的和剩下的各占这批面粉的几分之几?
五、课堂小结
1.用直线上的点表示分数的方法是怎样的?
2.口答:求一个数是另一个数的几分之几的依据是什么?解题时应该怎样思考?
六、课堂作业
练习十八第4、7、8题。
课题三:分数与除法的关系
教学要求 ①使学生正确理解和掌握分数与除法的关系,会用分数表示两个数相除的商。②培养学生的逻辑推理能力。③渗透辩证思想,激发学生学习兴趣。
教学重点 理解和掌握分数与除法的关系。
教学用具 投影片(教材第89页的饼图)
教学过程
一、创设情境
1.填空。
(1) 表示。
(2) 的分数单位是,它有个这样的分数单位。
2.计算。(1)58 (2)49
二、揭示课题
我们知道,在计算整数除法时经常遇到除不尽或得不到整数商,有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识分数与除法的关系。(板书课题)
三、探索研究
1.教学例2
(1)读题后,指导学生根据整数除法的意义列出算式。板书:
13=
(2)讨论:1 除以3结果是多少?你是怎样想的?
(3)教师画出线段示意图,帮助学生理解。
1米
?
通过讨论使学生明白:把1米平均分成3份,其中一份应是1米的 ,就是 米。
(3)写出答语。
2.教学例3。
(1)读题后,引导学生列出算式:34。
(2)指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
(3)请几名学生口述分法及每份分得的`结果,教师总结几种不同的分法。
(4)归纳。从上面的操作可以知道,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块拼合起来就是1个饼的 ,即 块。因此,
34=(块)。
由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样一份的数。
3、认识分数与除法的关系。
(1)引导学生观察13=、34=这两道算式,想一想:
①两个自然数相除,在不能得到整数商的情况下,还可以用什么数表示?
②用分数表示商时,除式里的被除数、除数分别是分数里的什么?
③分数与除法的关系是怎样的?
(2)教师总结,学生发言,归纳出以下三点:
①分数可以表示整数除法的商;
②在表示整数除法的商时,要用除数作分母、被除数作分子;
③除法里的被除数相当于分数里的分子,除数相当于分数里的分母。(强调相当于一词)
分数与除法的关系可以表示成下面的形式:
板书:被除数除数=
(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可发怎样表示?
板书:ab=(b0)
(4)想一想:这里的b能为0吗?为什么?
启发学生说出在整数除法里,除数不能是零,在分数中分母也不能是零,所以这里b0。
(5)再想一想:分数与除法有区别吗?区别在哪里?
着重强调:分数是一种数,但也可以看作两个数相除。除法是一种运算。
4、学生阅读教材,质疑问难。
四、课堂实践
教材第91页中间的做一做。
五、课堂小结。
引导学生回顾全课,说说学到了什么,自我总结,教师作补充。
六、课堂作业 。练习十九第1~3题。
课题四:分数与除法关系的应用
教学要求 ①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道事物间在一定的条件下是可以相互转化的观点。
教学重点 求一个数是另一个数的几分之几的应用题。。
教学过程
一、创设情境
1.口答:30分米=米 180分=时
练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。
2.说一说:分数与除法的关系?
3.用分数表示下面各算式的商。
(1)79(2)47(3)815(4)5吨8吨
二、揭示课题
这节课学习分数与除法关系的应用。(板书课题)
三、探索研究
1.出示例4。
(1)出示例4并审题。
(2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?
让全体学生尝试练习。
(3)集体订正。订正时让学生说说是怎样想的?
(4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?
重点说明当两数相除得不到整数商时,其结果可以用分数表示。
2.练习教材第91页下面的做一做。
3.教学例5 。
(1)出示教材第92页复习题,让学生独立列式解答。
集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?
板书:3010=3
答:鸡的只数是鸭的3倍。
(2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。
讨论后师生共同评价,主要有两种方法:
①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的 。
②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:710=。
(3)比较复习题与例5异同点。
通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。
4、练习。教材第92页做一做第1、2题。
四、课堂实践
1.在括号里填上适当的分数。
8厘米=米 146千克=吨 23时=日
41平方分米=平方米 67平方米=公顷 37立方厘米=立方分米
2.五(1)班有女生25人,比男生多4人。
(1)男生占全班人数的几分之几?
(2)女生占全班人数的几分之几?
(3)男生人数是女生人数的几分之几?
五、课堂小结
1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?
2、求一个数是另一个数的几分之几应用题的解答方法是什么?
六、课堂作业
练习十九第4~7题。
七、思考题。
练习十九第8题及思考题。
课题五:分数大小的比较
教学要求 ①使学生掌握分母或分子相同的几个分数大小比较的方法,并能正确比较分数的大小。②应用观察图示边比较边归纳的方法,渗透化归、分类等思想。③培养学生口述算理及归纳概括能力。
教学重点 掌握比较分数大小的方法。
教学用具 投影片(教材例6、例7直观图)
教学过程
一、创设情境
1.教材第93页复习题,请一名学生口答。
2.看图写分数,并比较分数的大小。
0 1
二、揭示课题
以前我们通过对图形的观察,初步学会了最简单的两个分数大小的比较,这节课就来进一步探究分数大小的比较方法。(板书课题)
三、探索研究
1.同分母分数的大小比较。
(1)比较 和 的大小。
出示例6左图,引导学生观察后提问: 和 相比,哪个分数大,哪个分数小?(板书: > )
如果没有直观图,该怎样比较 与 的大小呢?
因为 和 的分母是相同的,它们的分数单位都是 , 是2个 , 是1个 ,2个 比1个 多,所以 > 。
(2)用类似的方法引导学生比较 和 的大小。
(3)观察例6这两组分数,找出它们有什么共同特点?分母相同的两个分数,该怎样比较它们的大小?(请一名学生口答)
板书:分母相同的两个分数,分子大的分数比较大。
2.练习:教材第93页做一做。
3.同分子分数的大小比较。
(1)比较 和 的大小。
①出示直观图,使学生从图上看到:平均分的份数越多,每一份反而越小,所以 大于 。
② 和 的分子相同,表示所取的份数一样多,它们的大小是由分数单位决定的。分母小的分数表示分的份数少,每一份就大,也就是分数单位大;分母大的分数表示分的份数多,每一份就小,也就是分数单位小。所以 大于 。
(2)比较 和 的大小。
用类似的方法进行比较并得出结论: < 。
(3)想一想:上面每组中的两个分数有什么不同的地方?分子相同的两个分数怎样比较大小?
板书:分子相同的两个分数,分母小的分数比较大。
4、练习:教材第95页的做一做。
四、课堂小结
比较两个分数的大小,首先要看清是分母相同还是分子相同。如果分母相同,关键看分子,分子大的分数比较大;如果分子相同,关键看分母,分母小的分数比较大。
五、课堂实践
1.练习二十第1题。
2.练习二十第3题。
六、课堂作业
练习二十第2、4题。
七、思考练习
在括号里填上合适的数
< < < > >
分数的意义教案 篇3
教具准备
投影。
教学过程
(一)导入
分数的意义和性质这个单元的知识我们已经学习完了,今天这节课我们共同来复习一下这个单元的知识。
(二)教学实施
1 . 引导学生归纳、梳理知识点。
提问:回忆这个单元我们主要学习了哪几部分知识?每部分又有哪些主要概念?这些概念之间有什么联系?你能试着归纳出来吗?
学生自己试着归纳,然后请学生汇报发言,集体补充。
老师随着学生的汇报,进行板书。
分数的意义
分数的意义
分数与除法的关系:a÷b= (b≠0)
真分数
真分数和假分数
假分数 带分数
约分 最大公因数
分数的基本性质的
通分 最大公倍数
① 同分母分数
分数大小的比较 ② 同分子分数
③ 分子、分母都不同的分数
分数化成小数
分数和小数的互化
小数化成分数
2 .应用知识练习。
( 1 )完成教材第101 页的第1 题。
先独立完成填空,集体订正。
然后讨论:分数意义是什么?分数单位是什么?分数和除法有什么关系?
( 2 )完成教材第101 页的第2 题。
让学生先将这7 个分数分类,再说一说分类的依据,每一类分别是什么分数,它们之间有什么关系。
( 3 )完成教材第101 页的第3 题。
学生先独立完成,然后说说比较分数的大小有几种情况,怎样分别比较分数的大小。
( 4 )完成教材第101 页的第4 题。
先让学生说一说分数化成小数和小数化成分数的方法,再完成题目给出的分数与小数的互化练习。
提问:互化时要注意什么?
(四)思维训练
1 . 分数 是真分数,而且可以化成有限小数,x 最大是几?
2 .一个分数,分子和分母的和是43 ,如果分母加上17 ,这个分数就可以化简成言,这个分数是( ) o
3 .一个最简分数,把它的分子扩大2 倍,而分母缩小到原来的. 后,正好等于 ,这个分数原来是( )。
(五)课堂
通过本节课的学习,我们对分数的意义、真分数和假分数、分数的基本性质、约分、通分、分数和小数的互化等概念更加清楚。同时,进一步明确了这些概念之间的内在联系,并能灵活应用这些概念解决问题。
教学目标
1 .通过复习,帮助学生梳理本单元的知识要点及知识间的联系。
2 .培养学生归纳、知识的能力,掌握和复习知识的方法。
3 .培养学生自觉复习的习惯。
重点难点
归纳、本单元的知识点。
分数的意义教案 篇4
师生活动
一、 导入新课。
二、 教学新课。
三、实际应用
四、总结
“猜猜哪杯糖水甜?”
1、出示2杯糖水:1号杯——水30克,其中糖5克,
2号杯——水20克,其中糖4克。
小组讨论,说说你是怎样判断的。
学生交流。
小结:根据糖和糖水的关系或糖和水的关系,才能判断出谁甜。
2、依据糖和糖水的关系,判断小组上表格中的3杯糖水谁最甜?小组分工合作完成。
学生交流,说说你是怎么比较的?
1、百分数的意义。
如果要想比较这一共的糖水谁最甜,该怎么办?
指出:在实际生产、生活、工作中,为了便于统计和比较,通常把这样的分数用分母是100的分数来表示。
把表格中的分数改写成分母是100的分数。说说这些分数的意义。
揭示出百分数的意义。
2、百分数的读写法。
自学书上的有关内容。
把表格中的百分之几改写成百分数的形式,并说说意义。
练习:练习十九 4
练一练 1看到这些图形,你想到了什么数?
举例:说说准备资料中的百分数的意义。
折出百分数。
3、百分数和分数的.比较。
下面的说法你认为对吗?
(1) “六年级男生人数是全年级总人数的57/100”,可以说成“六年级男生人数是全年级总人数的57%”。
(2) “学校十月份用纸13/100吨”,可以说成“学校十月份用纸13%吨”。
小结:百分数和分数的不同。
根据提供的信息说说百分数的意思,及从信息中你想到了什么。
说说自己的收获。
分数的意义教案 篇5
教学内容:
百分数的意义和写法(小学数学九年制义务教材第十一册).
教学目标:
通过教学,使学生正确理解百分数的意义,了解百分数与分数的异同,正确读写百分数.
教学重点:
百分数的意义.
教学难点:
百分数与分数的异同.
教学过程:
一、复习引入:
教师小结:分数既可以表示数量,也可以表示关系.
2.下面各句中的分数表示什么意思?(学生回答,教师在黑板上画出线段图.)
提问:单位一是谁?分数表示谁与谁的关系?
二、新课:
1.意义:上面这些表示关系的分率和倍数都可以用一种新的数来表示,这种数叫百分数.
(板书课题,并把上面句中和图中的分数改成百分数,指导读法.)
(1)参加课外小组的人数占全年级的70%.(读作:百分之七十)
(2)已经修了一条路的25%.(读作:百分之二十五)
(3)今年的钢产量是去年的120%.(读作:百分之一百二十)
提问:这些百分数在各句中分别表示谁与谁的关系?谁表示100份?
像这样表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比.(补充板书)
追问:百分数是一种什么数?
2.指导写法:
写百分数时,先写分子,再写百分号(70%),百分号先写左上角的圆圈,再写斜线,最后写右下角的圆圈,两个圆圈写的要比分子小.
读百分数时,与分数的读法一样.(示范读法)
练一练:用手指在桌上写一写,然后读一读.
在本上写:25% 16.7% 1.25% 100% 131%
3.比较百分数与分数的异同:(小组讨论后指名发言,教师出示投影)
同:都是数,读法相同.
异:(1)意义不同:分数是表示把单位一平均分成若干份,表示这样的一份或几份的数,既可以表示数量,也可以表示关系.百分数是表示一个数是另一个数的百分之几的数,只能表示关系,不能表示数量.
(2)写法不同:写分数时,先写分数线,再写分母,最后写分子,分子、分母分别写在分数线的上下.写百分数时,先写分子,后面写上百分号.
(3)使用范围不同:分数的`分子只能比分母小,分子大于分母的要化成带分数或整数,不是最简分数的要化成最简分数,分子必须是整数.而百分数的分子可以比分母小,也可以比分母大,还可以和分母相等,可以是整数,也可以是小数.
三、练习:
1.读百分数:(互相读)
1% 5% 99% 100% 300% 0.6% 38.3% 233.3%
2.写百分数:(两组互相看)
百分之七 百分之四十六
百分之五点三 百分之三百一十点六
百分之五十五 百分之四百
百分之零点一 百分之百
3.把下图中的阴影部分用百分数表示,说说阴影部分、空白部分各占整体的百分之几.
4.用阴影表示下面的百分数,说说百分数表示谁占谁的百分之几.
5.判断:(用手势表示)
(1)一本书,已经看了它的75%,还有25%没有看. ( )
(2)一根绳子长50%米. ( )
(3)分母是100的分数叫百分数. ( )
(4)火车的速度比汽车快25%,火车的速度是汽车速度的125%. ( )
6.看图填空:
把( )看做单位一,( )占( )的60%,没走的路程占( )的( )%.
把( )看做单位一,( )相当于( )的32%,苹果树是( )的( )%.
把( )看作单位一,( )相当于( )的27%,现在用电是原来的( )%.
四、总结:
看着黑板概括一下今天的学习内容,你学会了什么?什么是百分数?怎样写?与分数有什么不同?
四、布置作业:
1.读书,复习今天的学习内容.
2.书第68页5~8.
五、板书设计:
分数的意义教案 篇6
一、教学分析
(一)内容分析
《分数的意义》是人教版义务教育课程标准实验教科书五年级下册的教学内容。《分数的意义》是在学生初步认识分数的基础上系统学习分数的开始,也是把分数的概念由感性上升到理性的开始。分数的意义是今后学习分数四则运算和分数应用题的重要前提,对发展学生的思维能力有着重要作用。学生已经知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份,可以用分数来表示;本节课学习的重点是让学生理解不仅一个物体,一个计量单位可用自然数1来表示,许多物体看作的一个整体也可用自然数1来表示,通常把它叫做单位“1”,进而总结概括出分数的意义。
(二)学生分析
五年级的学生在注意力方面,有意注意逐步发展并占主导地位,注意的集中性、稳定性、注意的广度、注意的分配、转移等方面都比低年级学生有不同程度的发展。
在记忆方面,有意记忆逐步发展并占主导地位,抽象记忆有所发展,具体形象记忆的作用仍非常明显。
在思维方面,学生逐步学会分出概念中本质与非本质,主要与次要的内容,学会掌握初步的科学定义,学会独立进行逻辑论证,但他们的思维的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。
在想象方面,学生想象的有意性迅速增长并逐渐符合客观现实,同时创造性成分日益增多。
通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,感受数学就是来源于生活,激发学生的学习兴趣。让学生在认识分数的过程中,应该让学生经历丰富多采的数学学习活动,就是使学生通过亲身实践和自我体验,获得、理解和应用知识、技能,并在数学思考、问题解决、情感与态度方面都得到发展。
(三)环境分析
多媒体教室(包括电脑、实物投影)
二、教学目标
本节课的教学,单位“1”和分数单位这两个概念非常重要,从直观到抽象,由个别到一般,利用操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得感悟,自己构建这些概念的意义。
(一)知识与技能:在学生原有分数知识基础上,使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义。
(二)过程与方法:让学生在轻松和谐的氛围中主动参与、积极合作、充分体验、经历认识分数意义的过程,培养学生的抽象、概括能力。
(三)情感与态度:使学生在学习分数的意义的过程中进一步培养分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。
三、教学重难点
(一)教学重点:理解分数的意义,认识分数单位。
(二)教学难点:理解、抽象出单位“1”。
四、教学方法
启发谈话法、尝试法、引导发现法、合作交流法、讲练结合法
五、教学过程
(一)创设情景,温故引新
1.出示
引导学生回忆分数的基础知识
板书:分数
【学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数,知道分数的各部分的名称,会读、写简单的分数。通过引导学生回忆,为新知做好铺垫。】
2.设疑:分数用在什么时候?
(指名1-2名学生读,如果发现有问题及时纠正)
师小结:在进行测量、分物或计算时,往往不能正好得到整数的结果,这时用分数来表示。
【引入分数,使学生感悟分数是适应客观需要而产生的】
3.课件出示分数的起源
(通过多媒体的直观展示,激发学生对学习数学的探究欲望。)
【介绍3000多年前的古埃及、20xx多年前的中国,以及后来的印度、阿拉伯人所用过的各种分数表示方法。这些多种多样的表示方法或记号,可以让学生体会分数表示方法的多样性及其历史面目,开拓学生的知识面。】
(二)唤醒已知,探究新知
1.唤醒已知
提示:用为例,用自己喜欢的方法表示,并给这几幅图进行分类。
学生根据以前所学习的知识进行解答
小组合作,解决分类问题。
板书小结:一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。
2.寻找生活中的分数
(1)找出图中的单位“1”
师:你是怎么知道的,或者说你是怎么想的
(2)寻找教室里的单位“1”
(3)寻找生活中的单位“1”
(学生畅所欲言,老师加以肯定)
师:单位“1”可以很大,也可以很小,那么单位“1”不同,所对应的量也就不同
3.概括分数的意义
师小结:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
4.课堂练习:
(1)判断
(2)填空
(3)用直线上的点表示分数
(三)认知分数单位
出示课件
1.以12块糖为例,引导学生动手分分数
一堆糖,平均分成2份,每份是这堆糖的()
平均分成3份,2份是这堆糖的()
平均分成4份,3份是这堆糖的()
平均分成6份,5份是这堆糖的()
师:你来试一试吧!完成课堂练习。
用12个小正方体代替糖果,学生动手操作,并汇报。
【这一填空练习,既是对分数意义描述的具体化和巩固,又能为紧接着学习分数单位提供具体的实例。】
2.认识分数单位
引导发现里有几个
里有几个
师小结:把单位“1”平均分成若干份,表示其中的一份的数叫分数单位。
整数、小数都有计数单位,例如:整数9的计数单位是1,9里面有9个1,0.9的计数单位是0.1,0.9里面有9个0.1。分数也有分数单位。例如:里有3个,的分数单位是。
【从分数的现实来源和数学内部来源两方面帮助学生深化对分数的认识】
(四)迁移类推,巩固认识
1.填空练习:
2.巩固:用分数表示下面各图中的涂色部分的
3.提升练习:完成书上的练习题
(五)作业:
任选一个分数,在图中涂色表示出来。
(六)全课总结,疏理认知
通过这节课的学习,你有什么收获?
(七)板书设计
分数的意义
把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
4份1份
4份3份
分数单位
(八)教学反思
分数的意义对于小学生来说是一个比较抽象的概念,怎样让学生理解单位“1”的含义。引导学生一步一步地从具体的实例中逐步抽象归纳出分数的意义是本节课所要解决的重点问题。因此,在本节课的设计上我淡化形式,注重实质,注意数学与生活的联系,一切以学生的发展为根本,以提升学生的数学思维为核心,引导学生在动手实践、自主探究与合作交流中体会、领悟单位“1”的含义、进而逐步理解分数的意义。为了能缓解降低难度,努力遵循因材施教的教学原则,以学生的认知水平、学习心理为基础,营造和谐课堂,活化教学内容,合理设计教学过程,较好的'完成了这一节的教学活动。课后又做如下反思:
首先,我个人认为在以下几方面把握的比较好。
1.调动学生的生活经验和认知基础,促进知识经验的迁移。
分数在生活中有着广泛的应用,学生已有的生活经验和认知基础就是一种重要的课程资源。发挥多媒体在教学中的作用,创设较为丰富的,贴近学生生活实际的情景,让学生在熟悉的情景中,感悟分数在生活中的体现,体会数学回归生活,让每一个知识点都充满生活的气息。教学时举出大量实例或图形,引导学生运用对分数的初步认识进行分析。分析时紧紧抓住单位“1”的概念展开教学,使学生理解单位“1”不仅可以表示一个东西,一个计量单位,也可以表示一个整体的含义。
2.注重学生的实践操作,认知、感知分数的意义
在本课教学中,有意识帮助学生积累生活经验,使学生在实践体验中获得直接的感观,注重所学知识与日常生活的密切联系。每一个数学知识都是在学生亲身经历了知识产生过程、体验了愉快的学习过程之后才能在学生的脑海中生根发芽。
3.教学面向全体学生,营造和谐课堂氛围
整节课我创设轻松、愉快的课堂氛围,调动学生的积极性,激发学生的兴趣,让学生在玩中学知识。
其次,整个教学中我感到在以下几方面的不足:
1.深入教材,促进有效教学
在教学过程中,分析时紧紧抓住单位“1”的概念展开教学,使学生理解单位“1”不仅可以表示一个东西,一个计量单位,也可以表示一个整体的含义。通过讨论引导学生初步概括出分数的意义。加强学生说的能力和说的过程的训练,学生才能对知识由整体认识转化为自己的知识。
2.巧用生成资源,促进有效教学
在教学过程中,理解单位“1”的含义上多让学生说出自己的见解,会较好的提高本节课的教学效果,这就是说如果巧妙的运用课堂中有效的生成资源,教师的指导主体作用发挥恰当,再通过师生的互动方式加以有效利用,就会再次强化学生对单位“1”的正确认知,这样就能实现知识经验的迁移。
在今后的课堂教学中,我仍会努力建构和谐氛围,给学生充分的思考空间,创设合理情景,巧妙设计问题进行引导,把重点、难点运用合理的方法有效处理。引导学生主动探究,自主学习获得新知。真正让学生体验到学习的乐趣。
分数的意义教案 篇7
分数的意义
分数的意义 总42(电36)
教学目标:使同学了解"分数"发生的原因,理解分数的意义,弄清分子,分母,分数单位的含义.
教学重点:使同学理解"分数"的意义,弄清分母,分子和分数单位的含义.
教学难点:使同学理解"分数"的意义,弄清分数单位的含义.
教学课型:新授课
教具准备:课件
教学过程:
一、创设情景,温故引新
1,提问:A,大家知道分数吗 谁能说一个分数
B,你能举个实例说说这个分数的意义吗
2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决.即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示.
3,揭示课题:分数的意义
二、联系实际,探究新知
自主学习,整体感知分数的知识.
(1)相互交流:① 关于分数我已经知道了什么 请把已知道的讲给同学们听.
(2)自学理解:① 关于分数,自学后我又知道了些什么
② 我还有什么不明白的地方呢
③ 关于分数我还想知道什么
2,探究深化,进一步理解分数的意义.
(1)用分数表示下面各图中的阴影局部.[课件1]
(2)填空.[课件2]
① 把一条线段平均分成5份,1份是它的.( )/( );4份是它的( )/( ).
② 把一块饼平均分成2份,每份是它的( )/( ).
③ 把一个正方形平均分成4份.1份是它的( )/( );3份是它的( )/( )
(3)用一张长方形的纸,折出它的1/4,并涂上阴影.
用一张正方形的纸,折出它的3/8,并涂上阴影.
(4)抢答. [课件3]
① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )
② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )
③ 把这个文具盒你所有的铅笔平均分给2位同学,每位同学得到的铅笔数是( ).为什么是1/2 若平均分给5位;10位;50位同学呢
④ 假如这个文具盒里只有6枝铅笔.现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义
⑤ 假如把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义 假如是100;1000枝呢
(5)说说下列分数所表示的意义.[课件4]
5/7 3/8 3/( ) ( )/9 ( )/( )
3,小结.
我们可以把许多物体看作一个整体,比方:一堆苹果,一批玩具,一班同学,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我 把它叫做单位 "1".
板书: 一个物体
单位"1" 一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数.
三、加强练习,深化概念
竞赛:请两位同学站起来.
提问:A,这两位同学是这组人数的几分之几
B,这两位同学是两组人数的------- 这两位同学是全班人数的-------
四、家作
1,P88 .1,2
2,P89 .3
板书设计: 分数的意义
一个物体
单位"1" 一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数
分数的意义教案 篇8
教学目标:
1、使学生认识百分数,知道百分数在生产、生活中的广泛应用。
2、使学生理解百分数的意义,能正确熟练读、写百分数。
3、培养学生的比较、分析、综合能力和应用意识。
教学重、难点:
百分数的意义
教学方法:
引导—————自学
预习提示;
(1)找一找生活中的百分数。
(2)什么是百分数?
(3)羊毛含量36%是什么意思?
(4)怎样求一个数是另一个数的百分之几。
教学过程:
一、创设情境
让学生把事先找到的生活中的百分数带入课堂。
请同学们拿出在生活中找到的实际应用的百分数,并说一说是在哪儿找到的。
学生交流。
在生产、生活和工作中,人们经常要用到百分数,百分数有什么好处?什么叫百分数呢?今天我们一起来研究百分数。
二、引导探究,揭示百分数的特征
(一)出示课本例
1、一条裙子,羊毛的含量为36%,对此进行分析,并完成下表。
一条裙子,羊毛的含量为36%。
这个句子中,单位“1”的量是:
这个百分数是( )和( )比较的结果。
这个百分数表示的意义是:
看到这个句子,你能想到什么?
这个36%的分母100表示什么?分子36又表示什么?
学生在小组内学习,每位学生在小组内汇报学习情况。
学生活动,教师参与。
什么叫做百分数?我们学过分数,分数既可以表示一个数是另一个数的几分之几,也可以表示一个具体的数量。那百分数呢?
学生通过探究得出:百分数是表示一个数是另一个数百分之几的数,百分数表示两个数的一种倍数关系,百分数又叫做百分率或百分比。
(二)小组合作学习,比较百分数与分数的不同。
接下来我们就比较一下百分数和分数,到底有那些不同?
通过合作学习使学生明白:百分数和分数的写法不同,为了区别与分数和便于书写,百分数通常不写成分数形式,而是采用%来表示。
在这个过程中渗透百分数的写法以及读法。并进行随机练习。
通过比较还要使学生明白;
①百分数可以不是最简分数,如:52%、38%,分子和分母不用约分,而分数就不一样了。
②百分数的分子可以是小数,如:3。1%。也可能分子比分母大,如:120%,和分数不同。
(三)学习求一个数是另一个数的百分之几,揭示百分数的意义。
出示例1。学生独立完成在小组内交流。
三、学生反思学习过程
回顾刚才的学习过程,说一说,你有什么收获?
四、多层练习,巩固深化
1、出百分数,并回答问题。
1% 18% 50% 89% 100% 125% 7。5% 0。05% 300%
① 谁是最小的百分数?在这组内还有比它小的吗?
② 谁是的百分数?
③ 请读出跟一半的`意思一样的那一个百分数。
④ 300% 是什么意思?
⑤ 在这组百分数中,我们可以看到,百分数的分子有的是小数,有的是整数,有的大于分母,有的小于分母,这是为什么呢?
2、读出下面的句子,并回答老师提出的问题。
(1) 我国的耕地面积约占世界的7%。
(2) 我国的人口约占世界的22%。
提问:这两句话中的百分数表示谁与谁比?
看到这两句话,你想到什么?
及时对学生进行思想教育。
3、三峡库区分重庆库段和湖北库段。重庆库段的面积占三峡库区面积的85%,湖北库段的面积占三峡库区面积的百分之几?
完成课本练习一的相关习题。
【分数的意义教案】相关文章:
分数的意义教案09-17
教案:分数的意义12-17
《分数的意义》教案01-24
人教版分数的意义教案12-30
【推荐】分数的意义教案02-24
分数的意义教案【荐】02-27
【精】分数的意义教案02-24
分数的意义教案【推荐】02-20
《分数的意义》教案优秀02-27
分数的意义教案15篇01-02