《乘法分配律》教学反思

时间:2025-09-15 09:36:24 教学反思 我要投稿

《乘法分配律》教学反思范文1000字

  作为一位刚到岗的人民教师,我们要有一流的课堂教学能力,写教学反思可以很好的把我们的教学记录下来,怎样写教学反思才更能起到其作用呢?以下是小编为大家整理的《乘法分配律》教学反思范文1000字,欢迎阅读与收藏。

《乘法分配律》教学反思范文1000字

  《乘法分配律》教学反思1

  我对教材内容、学情进行了认真的分析之后,确定了教学目标:通过小组合作探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示;经历共同探索的过程,培养解决实际问题和数学交流的能力;会用乘法分配律进行一些简便计算。通过学生自主研究、小组讨论、全班交流以及讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。

  通过教研组全体老师的努力,我们设计了比较合理的前置性小研究。

  在本节课的教学过程中,学生通过对“前置性小研究”的探索研究,能会用两种方法去解决同一问题,并且能讲出自己的思路;能够观察出并说出两道算式的特点,能够观察出两道算式的结果是相同的;能够按照算式的特点进行举例;能够自己说出规律,总结规律;能够用求结果和乘法的意义去验证这条规律的正确性、普遍性;能够运用乘法分配律解决实际的问题,在做题的同时感受乘法分配律给计算带来的方便。

  当然,本节课的教育教学过程,也是有不足的地方。我认为:

  1、教师在施教的过程中,经常性的打断学生的发言。其实这是很不好的习惯。课下陈靖嫣对我说:“老师,你一打断我,我就不知道怎么说了。”我自己也意识到了这个问题。我觉得在“生本课堂”中教师,应该有这样一种意识,那就是“等”的意识。等学生表达完他的所有想法之后,他们在遇到“瓶颈”的时候,老师可以经过有智慧的引导,帮助他们度过“难过”。可是我们很多时候,经常犯的错误是,学生只要一有点小问题,老师马上就出马,这样是极不好的做法。像本次课中,我有好几次打断了陈靖嫣同学的汇报,也打断了王孟阳同学的汇报,还有好几次打断了同学们的交流活动。

  对于这种打断可能在心里带着很侥幸的心理,认为我必须在规定的时间完成某些教学任务,不能让本节课“节外生枝”。可是,这种心理违背了“生本课堂”的基本教学理念。

  2、教师在引导的过程中,不能照顾到学生的想法。像:徐昊同学和李厚杰同学在课堂上,表达了自己的想法。可是我在施教的过程中,没有给予足够的重视。可能对于本节课的教学,他们的想法,是在浪费时间。可是,我的这种做法,却不能照顾到他们的后续发展。我觉得在处理这个事件的时候,我应该既不能让本节课“跑偏”,也不能浇灭他们的“兴趣之火”。这是需要有一定的教育智慧的。

  3、我觉得学生们的交流是不够热烈的。根本的原因是:学生们的.研究不够到位,不会提出自己的疑问,不能对自己的疑问进行探索研究。我觉得这都是老师在平时教学中,没有给予足够的指导的原因。

  还有很多的问题,也许是我没有意识到的。

  结合本节课,关于生本课堂我有了很多的想法。

  我认为真正的“生本课堂”是这样的:

  教师在教学设计、教学过程等各个环节,能体现学生的主体地位,从细节去体现。也是一种和谐的教育氛围。教师和学生可以围绕一个问题据理力争,也可以在一节课中,实现多个知识点的“串联”,也可能好几节课我们突破不了一个知识点的讲解。教师千万要改变原先“计件工作”的模式,我们还原教育本来的色彩。它应该是自然的,富有诗情画意的。我们身在其中,师生应该一起去营造一种氛围,体会教育给我们带来的幸和充实感。

  我立志让我的课堂,成为我们幸福的源泉。

  《乘法分配律》教学反思2

  乘法的分配律学生在本册书中是接触过的。譬如第42页的应用题第7题,其中就渗透了乘法的分配律。在数学一课一练上也有过这种类似的形式。以前在讲的时候是从乘法的意义上来帮助学生理解。

  一、抓住重点。让学生理解乘法分配律的意义。

  在教学时,我是按照如上的步骤进行教学的。可是在我引导学生把算式写成等式的时候让学生观察左右两边算式之间的联系与区别之后,学生就根本不知道从何下手。在他们的印象中,联系就是根据乘法的意义来进行联系。根本没有从数字上面去进行分析。可以说,局限在原先的思维中,而没有跳出来看。而让学生写出几组算式后,观察分析几组等式左右两边的`区别之后,学生也还是无法用语言来表达这一规律。场面一时之间很冷,后来我只好直接让学生用字母来表示,变化为这样的形式之后,有很多的学生都能够写出来。

  我不明白这是为什么,时间我给了,小组也交流了,在小组交流时我已经发现我们班上的学生根本无法发现其中的规律,所以也根本无法用语言来进行表达。难道是坡度给得不够吗?还是平时的教学中出现了问题。这些都要一一地去分析。

  二、考虑学生的学习情况,尊重他们的主观感受。

  在引导学生把两道算式拼成一道等式之后,我让学生交流,结果学生给出了两种(65+45)×5=65×5+45×5.和65×5+45×5=(65+45)×5。我把这两种方式都板书上黑板上。教材上要求的是第一种,即把(65+45)×5写在等式的左边,是为了方便学生对乘法分配律的意义的理解。我认为,从乘法的意义这个角度上来说,意义的理解我们班级可以做到。既然是从意义出发,那么两种方式其实都是可以的。所以在用字母来表达时,我们班的同学也有了两种的表达方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。

  三、练习中注意乘法分配律的变式。

  乘法分配律的意义是用,是为了计算的简便。所以,在练习中我注意让学生说清楚怎么使用的。尤其是想想做做第2题中的74×(20+1) 和74×20+74.一定要学生说清楚括号中的1是从哪儿来的。但是简便的思想渗透得还很不够。学生在完成想想做做第5题的时候,一大半的学生都没有采用简算的方法。哪怕他们在经过了第四题的练习时也是一样。

  今天教学了运算律——乘法分配律,对于例题的解决,学生能列出不同的算式,45*5+65*5和(45+65)*5,通过各自的计算得出计算结果相同,然后把这两条算式写成等式45*5+65*5=(45+65)*5,学生还能用自己的语言表述自己对等式的理解:45个5加65个5也就是(45+65)个5,然后又让学生再仿写了几个算式后让学生观察等式总结自己的发现,学生会用字母表示出这一规律,但用语言表述有困难了。

  《乘法分配律》教学反思3

  昨天,我与全班同学一起进行了乘法分配律探讨学习,从作业的反馈中,一部分同学的作业相当完美,对公式的应用,变形拓展都能应用自如;我也发现部分学生的正确率很低,特别乘法分配律的“分别”相乘理解得不清楚,没有把每个加数与因数相乘,造成作业正确率低。针对这种情况,在教学中应该注意些什么,我积极思考,与同学进行交流,找出他们思维中出错的原因,正确进行补救,以达到对乘法分配律的正确运用,灵活应用。

  一、乘法分配律的教学时,注重从例题的解答中引导抽象出乘法分配律。强调注重它的外形结构特点,也要同时注重其内涵。

  教材中植树情境图给出了以下的条件:一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树,“一共有多少名同学参加植树活动?”这一问题,得到了如下两种解答方法。

  方法一:①每组有多少名同学? 2+4=6人

  ②25组共有多少名同学参加植树? 6×25=150人

  综合列式:(2+4)×25

  =6×25

  =150(个)

  方法二:①挖坑种树有多少人? 4×25=100人

  ②抬水浇水的有多少人? 2×25=50人

  ③一共有多少人? 100+50=150人

  综合列式:4×25+2×25

  =100+50

  =150(人)

  同学们很容易得出(4+2)×25和4×25+2×25这两个算式结果相等。这时同学们往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个数的积的和,而忽视从乘法意义角度去理解。这时教师可提问“为什么两个算式是相等的.?”这里不仅要从解题思路的角度理解(4+2)×25=4×25+2×25是相等的,还要从乘法的意义的角度理解,即左边表示6个25,右边表示4个25加2个25,等于6个25,所以,(4+2)×25=4×25+2×25

  二、注意乘法分配律的特点,多进行练习。

  乘法分配律特征是两数的和乘一个数或两个积的和。在练习时学生特别容易出现错误。把算式做成(80+8)×125

  =80×125+80

  =10000+80

  =10080

  为了学生更好地掌握可以让学生划出分别相乘的箭头如:

  提醒同学把箭头画出来,把两个加数“分别”与括号外的因数相乘,这样尽量减少一些把一个加数乘掉的同学。

  三、多进行分组练习

  一组:15×(8+4) (80+8)×125 (40+4)×25

  47×(100+1) 78×(200+2) (100-1)×125

  在练习上述题后,让学生观察括号里的数如果不运用乘法分配律会变成怎样的一个算式:

  15×12 88×125 44×25

  47×101 78×202 99×125

  这些算式我们如何将一个因数拆成两个数相加的形式,这两个加数尽量要拆成整十整百或是与外面的数相乘能得整十整百的数。

  在让学生在对乘法分配律基本公式的运用掌握较好之后,再进行第二组乘法分配律反方向运用的形式。

  《乘法分配律》教学反思4

  教材分析:

  乘法分配律是北师大版小学数学四年级上册第三单元最后一节的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元教学的一个重点,也是本单元内容的难点,教材是按照发现问题--提出假设--举例验证--归纳结论等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。

  1.上课一开始,我创造性地使用教材,创设了订校服的教学情境,使学生解决非常熟悉的生活问题、

  2.在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。

  3.本节课有一定的亮点,但其中出现了不少问题:学生参与的积极性没有预想中那么高。可能与我相对缺乏激励性语言有关。也有可能今天的题材学生不太感兴趣。

  4.以后注意,学生不感兴趣的材料,教师应该想办法使呈现的这个材料变得能让学生感兴趣

  教学反思:

  乘法分配律是第三单元的.一个难点。在理解、掌握和运用上都有一定难度。因此如何上好这一课,让学生真正地理解乘法分配律,并在理解的基础上运用好它?我觉得要注重形式上的认识,更要注重意义上的理解。因为单从形式上去记住乘法分配律是有局限性的,以后在运用乘法分配律的时候,遇到一些变式如:99×24+24会变得难以解决。注重意义的理解,能让学生从更高的层面上去理解乘法分配律,那么将来无论形式上怎么变化,学生都能轻松运用乘法分配律。

  北师大版的教材注重学生的探索活动,在探索中让学生自己去发现的规律,才能让他们真正地理解。本课是“探索与发现”的第三节课了,学生已经有了一定的探索能力。因此本课的设计完全围绕着学生的自主活动在进行。

  总体上我的教学思路是由具体——抽象——具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。

  在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。

  《乘法分配律》教学反思5

  本节课主要让学生充分感知并归纳乘法分配律,理解其意义。教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。在充分感知的基础上引导学生比较这几组等式,发现有什么规律?这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,新教材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的方式来阐明自己发现的规律:有用字母的,有用符号的,大部分学生会说,没问题。对于应用这一乘法分配律进行后面的练习还可以。如:书上第55页的第5题,学生都想到用简便方法去列式计算。整节课,学生还是学的比较轻松的。

  关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:

  首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的预习,因此课上的时间比较仓促。

  其次,我在学生解决完例题的`问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。

  最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的特点,然后让学生用自己的方式创造相同类型的等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。

  不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。

  《乘法分配律》教学反思6

  ①1355+5587=55(13+87)=5513+5587

  ②8(125+9)=8125+9

  ③(100-7)25=10025+725

  ④9947=(100-1)47=10047-1

  ⑤35201=35(201-1)

  ⑥79125=125(80-1)=12580+1251

  ⑦79125=125(80-1)=12580-1

  ⑧1252532=1258+425

  ⑨88125=808125

  ⑩24335=(245)33=10033

  学生对于乘法分配律和结合律极容易混淆,而且符号容易抄错。针对这些情况,在教学中应该注意什么呢?

  1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

  教学时我们往往注重等式两边的外形特点,即a(b+c)=ab+ac缺乏从乘法意义角度的理解。这时教师可提出为什么两个算式是相等的?这里不仅从解题的角度理解,如(2+7)3=23+73是相等的,还有从乘法的意义的角度理解,即左边表示出3个9,右边也表示出3个9,所以(2+7)3=23+73

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律的特征是两个数的和乘一个数或两个积的和。在练习题中(40+4)25与(404)25这种题学生特别容易出错。为了更好地掌握,可多进行一些对比练习,如进行题组对比25(8+4)和2584;25125254和25125+258;每组算式有什么特征和区别?符合什么运算定律?应用什么运算定律可以使计算简便?为什么要这样算?

  3、让学生进行一题多解的练习,加深对乘法结合律和乘法分配律的理解

  如:12588;10189你能有几种方法?12588①竖式计算②125811③125(80+8)④(100+25)88等等。10189①竖式计算②(100+1)89③101(100-1)④101(80+9)⑤101(90-1)等.对于不同解法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?力争达到用简便计算法进行计算成为学生一种自主行为,并能根据题目的特色灵活选择适当的.算法的目的

  4、多练

  针对题目多次练习。练习时注意练习量和时间的安排。刚开始可以天天练习,过段时间以后可以一两天练习一次,再到一周练习一次,典型题型课选择(40+4)25;(404)25;6325+6375;65103-653;5699+66;48102;4899等。

  对于比较特殊的题目可以间断性练习,对优生提出掌握的要求,如:3698+72;6825+68+6874;3212525等。

  只有在理解的基础上反复练习,才能使孩子对于乘法分配律牢固掌握,我将在反思过程中制定出切实可行的计划,尽快使孩子消化吸收。

  《乘法分配律》教学反思7

  乘法分配律是教学的难点也是重点。这节课采用从生活中的问题入手,利用学生感兴趣的具体情境展开。这节课我力图将教学生学会知识,变为指导学生会学知识,将重视结论的记忆变为重视学生获取结论的体验和感悟,将模仿式的学习变为探究式的学习。学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成过程。这样不仅让学生获得了数学基础知识和基本技能,而且更能培养学生主动探究、发现知识的能力。回顾整个教学过程,这节课的亮点体现在以下几个方面:

  一、从身边引入熟悉的生活问题,激趣探究

  我们在教学中要为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。在教学时,我先创设情景,提出问题:“一共有多少名学生参加这次植树活动?”。让学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。我利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。

  二、为学生提供了自己独立探究的机会

  数学教学应该是数学教学的.活动。传统的教学活动往往只重视结论的记忆,而这节课我把学生的活动定位在感悟和体验上,引导学生用数学思维方式去发现,去探索。尤其是在学生初步感悟到两种算法相等关系的基础上,继续为学生创造一个思考的情景。我要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的认识。

  三、为学生的学习方式的转变创设了条件

  模仿学习,学生“知其然,而不知其所以然”,知识容易遗忘,而且不能灵活应用。改变学生的学习方式,让学生进行探索性的学习,不能是一句空话。在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。

  《乘法分配律》教学反思8

  《乘法分配律》是整个四年级运算定律中最最重要的一节。理解乘法分配律、并会很好运用他很重要!所以这节课重点就是在于让学生理解乘法分配律的意义。

  整堂课基本完成了教学目标,但在环节设置以及细节等方面存在很多问题。

  1、概念课亲历过程需精确、严密

  本节课是一节概念课,旨在学生通过操作整理式子(多余3)——观察式子——猜测观点——验证观点——总结定理,这样一个过程。如果后面没有反例,就证明存在这种成立的可能。而在整节课程中,学生没有明确的用具体数字验证它是成立的,所以推导出来的不具有说服力。可能会给学生一种不好的印象,猜想后就可以了,不需要验证、或者不需要反证来验证就可以了。所以概念怎么推到出来这个很重要。

  2、师生互动评判加强

  学生无论是回答好的还是不好的,对的还是不对的,都需要老师带有评判性的语言,这样对于学生的积极性都可以提高。同样的对于典型的问题可以进行当堂解答,这都是课堂生成的一个过程,需要重视学生在整个课程的反映这个很重要。

  3、语言表达方面可以优化

  在思维拓展的时候,本来应该是“如果给你一把剪刀,你可以拼吗?用最少的次数去剪,使它拼成一个长方形,你会剪吗?拼有什么要求吗?如果没有相等的两条边,你可以创造吗?”而在课堂上,表达的意思却是:“如果给你一把剪刀,你可以拼吗?拼有什么要求,如果没有,你可以创造吗?”结果导致最终在小组活动中,学生随意乱剪,并不理解活动的意义。数学讲究的是严密性以及逻辑性,所以要求要明确一些,引导性的语言要贴切。整个语言组织,如:相等的两条表而不是相同的两条边

  4、注重细节

  在整个过程中有同学列出38×(547-347)和(547-347)×38这两个算式,它都可以用乘法分配律来讲,但同时两者也是有差异的。课堂生成的东西需要注意,并且坐好预设。将38放到前面,可以避免出错。这个小的'知识点也是需要去让学生通过对比来理解的这很重要。方便他们积累避免错误。

  5、试教是一个课堂诊断的过程

  在上整堂课前,已经去试教过3个班。虽然每个班情况都不一样,但是试教就是跟孩子的磨合过程,试教过程中发现什么问题,再去改正过来,调整好。如果每个班都出现这样的问题,说明课程设置不合理。需要对教案进行修改。这也是为什么需要试教。希望在试教过程中,能够反思,自己发现问题所在。

  总的来说,这个课从制作教案、试教、修改、正式教学过程中,感谢数学组尤其是师傅对我的指点以及磨炼。试教让我明白了课件调整的重要性,一定要符合学生的认知发展规律。让我明白了数学语言是需要逻辑性,针对性以及严密性的。所以未来的路还很长,我还会再修改磨炼的。要相信好课是不断磨出来的!

  《乘法分配律》教学反思9

  乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的定律。如何教学能使学生较好的理解乘法分配律的内涵,并能正确的运用定律进行简便运算呢?我做了一下几点尝试。

  一、创设师生竞赛,激发学习欲望。

  上课教师先出示:(1)8×(125+11) (2)(100+1)×23

  (3 )648×5+352×5

  老师和同学们做一个比赛,王老师口算,你们用计算器算,看看谁能获。

  结果教师又快又对,学生都很奇怪,教师顺势导入:同学们都特别想知道在比赛过程中,学生用计算器都没有老师口算得快的原因吗?是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?今天我们就来探究其中的奥秘。

  这样的导入让学生充满了求知的欲望,激发了学习的热情。

  二、设计思考问题,学生自主探究。

  出示例题后,学生独立解答,然后教师出示思考问题,学生自主探究。

  讨论:

  1、这两种方法有什么不同?两个算式的结果如何?用什么符号连接?

  2、那么等号连接的这两个算式有什么特点和联系呢?请同学们带着老师给出的三个问题展开讨论。(课件出示问题)生A:我发现左边括号外的那个数,写到右边都要乘两次。

  生B:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

  整个教学过程通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的`内容。

  三、练习有坡度,前后有呼应。

  在本课的练习设计上,我力求有针对性,有坡度,同时也注意知识的延伸。练习的形式多样,课本上的填空题解决以后,设计了判断题和练习题,把学生易出错的问题提前预设好,而且通过练习让学生明白乘法分配律也可以两个数的差,也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为后面利用乘法分配律进行简算打下伏笔。为了让学生初步感受乘法分配律能使一些计算简便,我特意把开始和老师比赛的题目让学生运用今天所学知识进行计算,学生非常有兴趣,在练习中培养了学生分析、推理、概括的思维能力。

  总之,在本堂课中新的教学理念有所体现,是一节本色的数学课堂。但在具体的操作中还缺乏成熟的思考,自主探究环节对问题的设计不够简洁,还可以再做斟酌。实际分配律的揭示过程与教案设计顺序有些出入,感觉效果没有预想的好,上课时对于教案的熟悉程度还有待加强。

  《乘法分配律》教学反思10

  乘法分配律是继乘法交换律、乘法结合律之后的新的运算定律,在算术理论中又叫乘法对加法的分配性质,由于它不同于乘法交换律和结合律是单一的运算。从某种程度上来说,其抽象程度要高一些,因此,对学生而言,难度偏大,如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。在教学过程中有坡度的让学生在不断的感悟、体验中理乘法分配律,从而自己概括出乘法分配律。我是这样设计:

  一、让学生从生活实例去理解乘法分配律

  一共25个小组参加植树活动,每组里8人负责挖坑和种树,4人负责抬水和浇树。重组教材,改变每组的人数,由(4+2)个25,变为(8+6)个25更能凸显出应用乘法分配律后带来的方便,也为乘法分配律的应用打下伏笔和基础。并且把“挖坑、种树”“抬水、浇树”更改为“挖坑和种树”“抬水和浇树”减少了文字对学生理解带来的困难。

  通过引入解决问题让学生得到两个算式。先捉其意义,再突显其表现的形式。

  如(4+2)×25其意义就是6个25与4×25+2×25所表示的也是4个25再加2个25也就是6个25,它们的表示意义一样。因此得数也一样故成等量关系。然后观察它们之们的形式变化特点,两个数的和乘以一个数可以写成两个积相加的形式,再捉住因数的特点进行分析。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会

  借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。这是生活中遇到过的,学生能够理解两个算式表达的意思,也能顺利地解决两个算式相等的问题。

  二、突破乘法分配律的教学难点

  让学生亲历规律探索形成过程。对于探索简洁分配律的过程价值,丝毫不低于知识的掌握价值。既然是“规律定律”,就是让学生亲历规律形成的科学过程设计中,不着痕迹的让学生不断观察、比较、猜想、验证,从而概括出乘法分配律,在探索、归纳过程中,渗透着从特殊到一般,又由一般到特殊的数学思想和方法。

  相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变形的能力是教学的难点。为了突破这个教学难点,从生活中的实际问题出发,开放引入的情境,一共25个小组参加植树活动,每组里人负责,人负责。一共有多少同学参加这次植树活动?

  学生主动去设计、解决,调动学生的积极性。让学生根据自己的'想法,选择自己喜欢的方案,开放给学生,发挥学生的主体性,通过去发现、猜想、质疑、感悟、调整、验证、完善,验证其内在的规律,从而概括出乘法分配律。让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中。

  在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  当然,对乘法分配律的意义还需做到更式形结合解释,那就更有利于模型的建立。

  乘法分配律教学反思是必要的,所以老师们一定也要好好地去对待。不断的反思,才可以促进不断的进步。以上面的文章,希望与各位同行们共同进步。

  《乘法分配律》教学反思11

  乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的定律,是一节比较抽象的概念课。我根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。

  具体设计:先创设兔子吃萝卜的情景,调动学生的学习积极性。

  通过买“老伯伯养了10只猴子,每只兔子早上吃4个萝卜,晚上要吃3只萝卜这些猴子一天共要吃掉多少个萝卜?”列出两种不同的式子,让学生通过观察两种不同的计算方法也得到了相同的结果,这两个算式也可用“=”连接。

  然后让学生观察这两个等式的特点,仿造上面的等式填空。

  (4+5)×25=(14+25)×5=(37+125)×8=。

  再让学生观察这几组算式,等号左边的算式有什么相同点?等号右边的算式有什么相同点?等号左边算式中的两个加数与右边算式中的什么数有关系?左边算式中的一个因数与右边算式中的哪个数有关系?使之让学生从中感受了乘法分配律的模型。

  从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:(a+b)×c=a×c+b×c,他们确实能够体会到两个不同的算式具有相等的关系。

  第一步:通过资料获取继续研究的信息。

  虽然所得的信息很简单,只是几组具有相等关系的算式,但这是学生通过活动自己获取的,学生对于它们感到熟悉和亲切,用他们作为继续研究的对象,能够调动学生的参与意识。

  第二步:观察算式,寻找规律。让学生通过讨论初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,我不急于告诉学生答案,而是让学生自己通过举例加以验证。这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。

  第三步:应用规律,解决实际问题。通过对于实际问题的解决,进一步拓宽乘法分配律。这一阶段,既是学生巩固和扩大知识,又是吸收内化知识的阶段,同时还是开发学生创新思维的重要阶段。

  本节课的'可取之处:

  1、为学生提供了充分的数学活动机会,把学生的活动定位在感悟和体验上,引导学生用数学思维方式去发现、去探索。

  2、使学生在辨析与争论中,自然而然地完成猜测与验证,形成清晰的认识,在学生举例中使学生感到乘法分配律的一个重要因素,最后由特殊到一般总结字母公式。

  3、将模仿式的学习变为探究式的学习。

  4、在本课的练习设计上,能力求有针对性,有坡度,同时也注意知识的延伸。

  本节课的不足之处:

  1、习题在安排上在充分理解《乘法分配律》的基础上,可以再安排一些具有思考性的题目,如78×99+78=78×(99+1),为后面的简便运算作伏笔,这样教学效果会更好。

  2、在数学术语上还得反复推敲,以达到准确无误。

  3、本堂课中新的教学理念有所体现,但在具体的操作中还缺乏成熟的思考,对学生的积极性没有充分调动起来。

  我会坚持不断学习理论知识,多听课多向前辈们请教,切实提高业务能力。

  《乘法分配律》教学反思12

  教学过程:

  一、创境

  1、直接出示:师口述:张阿姨买5件夹克和5条裤子,一共要付多少元?你们能用两种方法解答吗?(独立)指名板演

  2、组织交流:你是怎么想的?(先求什么,再求什么)

  比较:最后结果,你发现什么?

  说明:这样的两个算式可写成一个等式

  3、出示课题运算律

  今天,我们就来仔细研究这两个算式,找出其中隐藏的秘密。

  二、探究:

  1、仔细观察此算式,比较等号的两边有什么联系?

  2、明确:左边先算什么?再算什么?右边先算什么?再算什么?

  3、根据观察,你有什么猜想?是不是所有这样的两道算式间都有这样联系呢?

  列举指名口答算式齐计算感受结果相等

  4、发现规律

  5、出示公式

  三、应用深化

  1、完成1,填一填

  2、完成2

  3、完成4

  老师出一道算式,请同学们根据乘法分配律,说出算式,比比谁反应最快。

  4、完成3:你能用两种不同方法计算长方形菜地周长吗?

  5、完成5

  四、回顾

  通过今天的学习你有什么收获?

  五、作业

  对自主探究与有效生成几点尝试

  ——《乘法分配律》教学案例与反思

  一、回顾

  本课对乘法分配律的教学,结合具体的问题情境,帮助学生理解两种算法之间的联系与区别,即先算出一套的和再乘5套,与先分别算5件及服和5条裤子的总价再相加,它们的结果相等;再通过例举验证,观察比较,归纳出乘法分配律;最后进行多层次的练习,进一步提升孩子们对乘法分配律理解与应用。

  二、反思

  新课程如春风化雨,走进了师生的生活。倡导自主探究,关注有效生成,成为新课程改革永恒的主题。在追求有效的教学中我作出了以下几点的尝试:

  1、从具体的问题情境出发,有利于学生的自主探索

  对于5套运动服一共多少元,这样的问题对于大多数学生来说是驾轻就熟的。结合熟悉的问题情境,便于学生理解两种算法间的联系与区别,

  为后叙对乘法分配律的成功探究理好伏笔。最近发展区理论告诉我们,只有找准了学生的知识起点,才能有效的教学,熟悉的问题情境面向全体学生,只有全面参与的探究,才是真正的自主有效的'探究。

  2、鼓励学生大胆猜想,在验证过程中形成共识。

  数学的猜想是在一系列的实验、观察、归纳、类比的基础上获得的,数学活动脱离了猜想就会显得没有意义。本课教学乘法分配律的探究过程分为几个层次:(1)启发猜想。在解决实际问题的基础上通过比较,引导学生的发散性思维,提出猜想。在具体的问题情境中,让学生插上想象的翅膀,激起创新的火花。(2)例举验证。让学生围绕猜想,以小组探究为主要形式,以独立思考例举算式与合作学习有机结合,算出得数发现两种算式结果相等,在相互交流中,形成对乘法分配律的共识。在交流、合作中,使学生真正成为学习的主人。

  3、设计多层次练习,在层层深入中启迪学生的智慧

  在形成对乘法分配律的认识后,分几个层次运用知识训练,首先是基础训练,书本55页第1、2、3题练习从正的两个角度进行,使学生明确乘法分配律是互逆的。从而达到灵活运用真正理解并掌握的目标。其次变式练习,我将书本55页第4题组练习设计成游戏的形式呈现,让学生在国松的氛围中,发现用乘法分配律可使计算方便。最后拓展延伸启迪智慧。练习中再次结合具体的问题情境,通过观察与比较体会到乘法分配律不仅适用于一个数两个数的和,也适用于一个数乘两个数的差。在这层层深入的练习中面向了全体学生,使每个孩子有所进步,有所发现,有所启迪,有所收获。

  新课改的脚步在前行,新课扆的理念在深入。作为教师只有不断内化新课程理念,才能使自己的教学面向全体,促使学生真正的自主探究,成为学习的主人。

  《乘法分配律》教学反思13

  乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解和叙述的定律。因此在本节课教学设计上,我结合新课标的一些基本理念和本地区的具体情况,注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。

  《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”数学教育家波利亚曾经说过:“数学教师的首要责任是尽其一切可能,来发展学生解决问题的能力。”而我们过去的教学往往比较重视解决书上的数学问题,学生一旦遇到实际问题就束手无策。因此,在上课的一开始,我创造性地使用教材,创设了一个肯德基餐厅用餐的情境,使学生置身于非常熟悉的生活情境中,极大地激发了学生的学习欲望。学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地证明两式相等。接着要求学生通过观察这个等式看看能否发现什么规律。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的.规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。

  与此同时,我还十分注重合作与交流,多向互动。倡导课堂教学的动态生成是新课程标准的重要理念。在数学学习中,每个学生的思维方式、智力、活动水平都是不一样的。因此,为了让不同的学生在数学学习中都得到发展,我在本课教学中立足通过生生、师生之间多向互动,特别是通过学生之间的互相启发与补充来培养他们的合作意识,实现对“乘法分配律”的主动建构。学生在这样一个开放的环境中博采众长,共同经历猜想、验证、归纳知识的形成过程,共同体验成功的快乐。既培养了学生的问题意识,又拓宽了学生思维,学生也学得积极主动。

  应用规律,解决实际问题是数学学习的目的所在。在练习题型的设计上,有抢答(填空)题、判断题、连线题、简算题和拓展题,它们并不孤立,而是有机地联系在一起,由基本题到变式题,由一般题到综合题,有一定的梯度和广度。使学生逐步加深认识,在弄清算理的基础上,学生能根据题目的特点,灵活地运用所学知识进行简便运算和拓展练习。不仅要求学生会顺向应用乘法分配律,而且还要求学生会反向应用。通过正反应用的练习,加深学生对乘法分配律的理解。从课堂反馈来看,学生热情较高,能够学以致用。学生通过自己的努力以及和同学的交流合作,解题速度和准确性都很理想。只有这样才能真正提高学生的计算能力。

  本节课有一定的亮点,但其中出现了不少问题:学生参与的积极性没有预想中那么高。可能与我相对缺乏激励性语言有关。也有可能今天的题材学生不太感兴趣。但学生不感兴趣的材料,教师应该想办法使呈现的这个材料变得能让学生感兴趣。另外,在回答问题时,个别学生的语言不够流利、准确。对乘法分配律的叙述稍显罗嗦,不够坚定、自信。在这方面有待今后加强训练和提高

  《乘法分配律》教学反思14

  《乘法分配律》是人教版四年级第三单元的内容,学生已经学过了加法交换律和结合律、乘法交换律和结合律,因此总以为学生对这一部分的知识并不陌生,就简单地设计了复习,回顾学过的运算律,再让学生发现运算律在简便计算中的运用,接着就出示了新课的例题,让学生从例题中寻找乘法分配律的规律,再通过举例,比较发现乘法分配律并用字母表示出来,基本完成本节课的新授,最后通过巩固练习让学生认识乘法分配律并在计算和实际生活问题中的运用。但上完课,发现课堂出现了很多的问题,学生对乘法分配律和乘法结合律的`混淆。那么在教学中应该注意什么呢?

  1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

  教学时我们往往注重等式两边的外形特点,即a×(b+c)=a×b+a×c。这时教师可提出为什么两个算式是相等的?这里不仅从解题的角度理解,如(2+7)×3=2×3+7×3是相等的,还有从乘法的意义的角度理解,即左边表示出3个9,右边也表示出3个9,所以(2+7)×3=2×3+7×3

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律特征是两个数的和乘以一个数或两个积的和。在练习题中(40+4)×25与(40×4)×25这种题学生特别容易出错。为了更好地掌握,可多进行一些对比练习,如进行题组对比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每组算式有什么特征和区别?符合什么运算定律?应用什么运算定律可以使计算简便?为什么要这样算?

  3、让学生进行一题多解的练习,加深对乘法结合律和乘法分配律的理解

  如:125×88;101×89你能有几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④(100+25)×88等等。101×89①竖式计算;②(100+1)×89;③101×(100-1);④101×(80+9);⑤101×(90-1)等.对于不同解法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?力争达到“用简便计算法进行计算”成为学生一种自主行为,并能根据题目的特色灵活选择适当的算法的目的

  4、多练

  针对题目多次练习。练习时注意练习量和时间的安排。刚开始可以天天练习,过段时间以后可以一两天练习一次,再到一周练习一次,典型题型课选择(40+4)x25;(40x4)x25;63x25+63x75;65x103-65x3;56x99+66;125x8;48x102;48x99等。

  对于比较特殊的题目可以间断性练习,对优生提出掌握的要求,如:36x98+72;68x25+68+68x74;32x125x25等。

  这样一来,让学生亲历观察、归纳、猜测验证推理等探究发现的全过程,使学生不仅发现了乘法分配律的知识的内含,而且学习了科学的探究的方法,数学思维能力也得到了发展。

  《乘法分配律》教学反思15

  《乘法分配律的运用》教学设计及反思

  教学目标

  (一)使学生学会用乘法分配律进行简算,提高计算能力.

  (二)培养学生灵活运用乘法运算定律进行计算的习惯.

  教学重点和难点

  能比较熟练地应用运算定律进行简算是教学的重点;反向应用乘法分配律是学习的难点. 教学过程设计

  (一)复习准备

  1.口算:

  (二)学习新课

  我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:乘法分配律的应用)

  1.创设情境,激发学生学习积极性.

  出示102×( ).

  请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.

  2.教学例6:用简便方法计算.

  (1)计算102×43.

  这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

  经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一

  做,对比一下,找出哪种方法简便.

  在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.

  (2)计算102×24.

  订正时说明怎样简算的?根据是什么.

  (3)计算9×37+9×63.

  启发提问:

  ①这类题目的结构形式是怎样的?有什么特点?

  ②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?

  在学生充分讨论的基础上,师板书:

  提问:这题能简算吗?什么地方错了?应怎样改?

  启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.

  2.根据乘法分配律把相等的式子用“=”连接起来.

  讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?

  在讨论基础上得出:

  第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的因数提到括号外面,两个不同的因数就是两个加数,改为(35+12)×45.

  第3题右边两个积里相同的因数是4,不同的因数是11和25,应改为(11+25)×4.因此

  要特别注意:括号里的每一个加数都要同括号外面的`数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.

  (四)作业

  练习十四第5~10题.

  教学反思:本节课从学生实际出发,创设了具体的生活情境,引导学生开展观察、猜想、举例验证、交流等活动,从激活学生已有的知识经验和探究欲望入手,引导学生主动参与数学的学习过程,从而发展学生数学思维数学能力,在学习过程中学会学习,学会与人交流合作。新理念还体现不够,学生的积极性没有充分调动起来。

  《乘法分配律》教学反思16

  小学阶段的“简便计算”是“数的运算”的重要组成部分。《整数运算定律应用到小数》是建立在学生已经掌握整数运算定律、熟练计算整数简便计算的基础上进行教学的。教学后,一些学生的作业出现了不同类型的错误。仔细分析,其中有许多值得我们去反思。

  一、出现的问题

  案例典型错题:1.25×3.2

  生1:1.25×3.2=1.25×(3+0.2)=1.25×3+0.2=3.75+2=5. 75

  生2:1.25×3.2=1.25×(4×0.8)=(1.25×4)×(1.25×0.8)= 5×0.1=0.5

  分析从这些问题中不难发现学生对运算定律的理解存在着一些不足。生1和生2混淆了乘法分配律和乘法结合律。到底在什么样的算式该用乘法结合律或用乘法分配律,他们并不能肯定,有的时候通常是靠“蒙”。

  反思在一些学生的知识结构中,运算定律只是简单的知识储备,而在应用运算定律进行灵活计算时则缺乏足够的自觉。究其原因,跟平时乘法运算定律的教学脱不了关系。

  1.教学观念重技能传授,轻算理剖析。简便计算的教学,教师往往过分偏重于简单模式化的技能训练,而忽视运算定律的算理分析,致使部分学生死记硬背、机械套用运算定律。这样的教学过程,老师强调从计算入手,得出乘法分配律,但是学生并不知道为什么会成立乘法分配律。学生只关注到乘法分配律应用到算式中的简便功能,却忽视了乘法分配律的意义分析,不利于学生今后对知识的运用。

  2.教学方法重记忆积累,轻意义理解。教学过程中常会出现这些现象:教师让学生背诵运算定律的公式,但是对算理却不作要求。当学生出现混淆运算定律的时候,教师却简单地从公式入手,告诉学生括号里是乘号时不能运用乘法分配律,只能当括号里是加法或减法时才能用乘法分配律。这些提醒也许在一定的`时间内会起到作用,但学生终究缺乏对运算定律的真正理解。此时应从乘法结合律和乘法分配律的意义入手,通过具体的情境让学生进行理解,也可以让学生对这两种运算定律进行比较,充分地理解乘法结合律及乘法分配律的意义,自主建构起知识体系。

  二、教学中应注意的事项

  1.掌握计算方法的学习起点。对于乘法分配律,其实早在之前的学习中就有接触,只是我们的教学中没能单独把它提出来转化为学生的认识。如口算两位数乘一位数中的“13×2=?”时,大部分学生都会计算。而且当时的方法就是先算个位上的3乘2等于6,再算十位上的1乘2等于20,20加6得26。如果把它的口算过程写下来就是:13×2=10×2+3×2=20+6=26。学生能够理解题目的意图是将13分解成10和3的和。假如能把一个数分解成两个数的和,同样也能分解成两个数的差、两个数的积。这些题目能帮助我们解决类似三位数乘两位数的简便计算。准确把握学生的学习起点,架构起新知识和旧知识的桥梁,就为理解乘法分配律奠定了基础。

  2.重现运算定律的意义背景。乘法分配律是一种抽象的数学模型,它与现实生活有着密切的联系。在小学阶段,大多能找到与之完全相符的生活原型。教材在内容呈现上提供了很多丰富的生活素材,这不仅有利于学生自助抽象构建乘法分配律模型,也为丰富模型内涵提供了认知的有利条件。

  《乘法分配律》教学反思17

  《乘法分配律》一课是四年级上册第四单元的教学内容,它相对于加法交换律、结合律,乘法交换律和结合律来说会比较抽象,学生较难于理解。因此把本课的教学重点定位为“探索并发现乘法分配律,理解乘法分配律的意义”,让学生经历“观察算式——仿写算式——解释规律——应用规律”的过程。

  一、比赛导入 激发探究欲望

  课前创设比赛情境:老师能很快说出下面几道题的得数,你信吗?不信的同学敢跟我比一比吗?(出示: 28×70+72×70 (125+10)×8 34×101)在我既对又快的说出结果时,孩子们都很惊讶,于是我因势利导:刚才的比赛老师算得快,是因为老师有一个取胜的秘诀,它可以使计算简便,你们想知道吗?学完这节课,你就能发现其中的秘密。学生个个跃跃欲试,瞬间充满探究的欲望,很好地激发了学生学习的兴趣。

  二、自主探索 发现规律

  在解决“一共贴了多少块磁砖?”中,学生列出了四个算式:3×10+5×10、4×8+6×8、(3+5)×10、(4+6)×8后,在让学生观察四个算式之后,先引导学生将四个算式进行分类并说明分类的`标准。通过这个环节,学生对于相等的两个算式的特征有了进一步的了解,知道将3×10+5×10和(3+5)×10分为一类,将4×8+6×8和(4+6)×8分为一类,是因为它们的数字都一样,都是由3、5、10组成或是由4、6、8组成的,了解乘法分配律中有3个数;如将3×10+5×10和将4×8+6×8分一类,将(3+5)×10和(4+6)×8分为一类的,则从中明白一边都是两个积相加,另一边则是两个数的和与一个数相乘。通过这个分类活动,让学生自主发现规律,为理解乘法分配律做了很好的铺垫。接着再让学生仿写算式,总结规律并解释规律,最后再应用规律揭示课前比赛中老师获胜的奥秘。

  三、错因分析 防患未然

  以往的教学经验告诉我,学生对于乘法分配律的运用经常出错,也很容易与结合律混在一起。为了防患于未然,在教学中创设了“小马虎这样做,你同意吗?

  (1)(6+30)×7 = 7×6+7×30

  (2) 25×(4+60)= 25×4+60

  (3) 16×5×8 = 16×5+16×8

  (4) 15×3+15×7 = (15+15)×(3+7)”让学生进行分析、判断并修正。特别是第3题,让学生对比乘法分配律和乘法结合律的数学模型,找出其中的区别,加以比较,从而发现模型左边乘法结合律是两个数的积,而乘法分配律是两个数的和,而模型右边乘法结合律是连乘的形式,而乘法分配律是两个积相加的形式。这样对比,加深对乘法分配律模型的认识和对其意义的理解。分析错因后,还不忘让学生说说:“你想对小马虎说什么?”来提醒告诫学生,除了要养成认真细心的习惯外,还要运用好乘法分配律,注意分配律与结合律的区别,将错误扼制在摇篮里。

  不足之处:虽然学生对于乘法分配律的理解比较到位,较好地达成了教学目标,但如能进行适时拓展,让学生通过“两个数的和与一个数相乘来联想到两个数的差与一个数相乘,两个数的和除以一个数及两个数的差除以一个数是否都可以应用乘法分配律这个数学模型?”会使课堂更丰满,更有深度。

  《乘法分配律》教学反思18

  乘法分配律是人教版四年级数学下册的内容,是一节比较抽象的概念课,是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。因此,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。

  所以,本课的教学目标,我定位在:

  (1)从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

  (2)渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

  本单元教材的一个鲜明特点是,不再仅仅给出一些数值计算的实例,让学生通过计算,发现规律,而是结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。这样便于学生依托已有的知识经验,分析比较不同的解决问题的方法,引出运算定律。

  教材提供了这样一个主体图:春季里,同学们开展植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。需要解决的问题是:一共有多少人参加植树活动?学生会用两种不同的方法分别列出算式,接着通过计算发现,两个算式可以用“=”连接,即25×(4+2)=25×4+25×2。我将其首先呈现给学生,目的是结合学生熟悉的问题情境,帮助学生体会运算定律的.现实背景。

  接着设计“悬念”,抛出四组题目,把学生引到“两算式的结果相等”的情况中来。先请学生猜想,而后验证,再请学生编题,让每一个学生都不由自主地参与到研究中来。在编题过程中,很多学生都交出了正确的“答卷”,增强了他们学习的自信心和继续研究的欲望。接着,请同学在生活中寻找验证的方法,以四人小组为研究单位,学生的思维活动一下子活跃起来,纷纷探究其中的奥秘。小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得成功的动机。

  通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐,自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律,“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考,学会了像数学家一样进行研究、发现!这对十岁左右的孩子来说,其激励作用无疑是无比巨大的,而“爱思、多思、会思”的学习习惯,会让孩子一生受益。纵观教学过程,学生学得轻松,学得主动。

  我通过这节课的教学感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。

  《乘法分配律》教学反思19

  义务教育课程标准实验教科书(北京师范大学出版社)五年级下册数学第81~82页《分数混合运算(二)》中,关于“整数的运算律在分数的运算中同样适用”这一教学内容,在课堂教学中,为了充分发挥学生学习的主体性和积极性,让学生在学习新知识的过程中能把新旧知识结合起来,我在课堂教学中,主要做到如下几点:

  一、提出简单问题,让学生运用已学知识加以解决

  在复习中,出示整数乘法的简算练习:

  25×17×4 125×32×25 53×69+47×69 101×85

  通过复习,引导学生得出已学习过的整数乘法运算定律,并板书:乘法交换律:a×b=b×a

  乘法结合律:a×b×c=a×(b×c)

  乘法分配律:(a+b)×c=a×b+b×c

  二、利用数学相关信息,引导学生主动参与数学学习活动,提高学生运算能力

  《义务教育数学课程标准》指出:“运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。”据此,我在导入新课后出示如下尝试题让学生练习:

  56×17×35 59×14+49×14

  因为学生在复习中已经熟悉了整数乘法运算定律,所以在尝试练习中大部分学生都能大胆运用整数乘法运算定律来解决尝试题,但也有一小部分学生运用四则混合运算顺序来算出答案。我根据练习的实际情况,每道题各让4名学生在黑板上板演(其中2名学生用简算、2名学生按运算顺序算)。然后让学生观察、比较、讨论异同,引导学生加以概括,得到“乘法的运算定律在分数的运算中同样适用”这一结论。此时,我再适当引导,让学生明白:在计算中,我们学习过的加法运算律、乘法运算律等“整数的运算律在分数的运算中同样适用”这一教学重点;接着,再引导学生概括得出:连减的.性质、连除的性质等“整数的运算性质在分数的运算中同样适用”这一延伸的知识内容。

  三、因势利导、适时调控,努力营造师生互动、生生互动、生动活泼的课堂氛围,形成有效的学习活动

  数学教育家波利亚曾经说过:“数学教师的首要责任是尽其一切可能,来发展学生解决问题的能力。”在新课教学以后,我趁热打铁,在巩固练习中出示如下练习题:

  823-(23+47)517×932×3415

  (58+712)×48 86×8485

  上述四道题,前三道题大部分学生都能根据已学知识用运算律来解答,但对于86×8485,很多学生都认为不能用运算律来简算,在解答过程中都用已学过的分数乘法的计算法则算出答案。于是,我让学生讨论,看谁有办法用简算的办法算出这道题的答案,鼓励学生学会独立思考。通过几分钟的讨论,相当一部分学生都确定这道题可用乘法分配律进行简算,只不过在简算时要先把86×8485改写成(85+1)×8485,然后再用乘法分配律即可计算出答案。

  《乘法分配律》教学反思20

  在设计本节课的过程中,我一直抱着“以学生发展为本”的宗旨,试图寻找一种在完成共同的学习任务、参与共同的学习活动过程中实现不同的人的数学水平得到不同发展的教学方式。结合教学设计,对本节课进行以下反思:

  一、在 教学这节课时 ,我 以计算引入,复习旧知, 然后抛出一个较为复杂的算式“ 46×276+276×54”如何计算更简便,一下子学生们鸦雀无声了,他们陷入了沉思中,有的抓脑袋,有的摇头,很是难为,这是,我很“自豪”的告诉他们,老师能在一秒钟内说出得数,你们相信吗?想知道老师的诀窍吗? 一下子,把学生的求知欲和好奇心调动了起来。

  二、让学生根据自己的爱好,选择自己喜欢的方法列出来的算式就比较开放。 出示情景图后,请学生自己思考,交流 。通过计算发现两个形式不一样的算式,结果却是一样的。这都是在学生已有的知识经验的基础上得到的结论,是来自于学生已有的数学知识水平的。通过用自己喜欢的方式来表达乘法分配律从而加以内化。学生学得积极、学得主动、学得快乐,自己动手编题、自己动脑探索,从数量关系变化的'多次类比中悟出规律。

  三、总体上我的教学思路是由具体——抽象——具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,我都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  四、在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。教师“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考。这对十岁左右的孩子来说,其激励作用无疑是无比巨大的,而“爱思、多思、会思”的学习习惯,会让孩子一生受益。

  在本节课的教学设计上,我体现新课标的一些理念,注重从学生的实际出发,把数学知识同生活实际紧密联系起来,让学生在体验中学到知识。通过创设情境,设置悬念,激发学生的学习欲望和学习兴趣。在练习题的设计上,我力求有针对性,有坡度,同时也注意知识的延伸。

  在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。有余数的除法教学反思法国号教学反思吃水不忘挖井人教学反思

【《乘法分配律》教学反思】相关文章:

《乘法分配律》教学反思07-01

《乘法分配律》教学后反思06-14

《乘法分配律》教后反思02-29

乘法分配律教学设计09-26

乘法分配律课后的教学反思范文(精选10篇)09-24

人教版《乘法分配律》教学反思范文(通用6篇)07-07

数学《乘法分配律》优秀教学反思范文(通用5篇)08-05

乘法分配律教案03-11

乘法分配律教案优秀12-21

四年级乘法分配律教学反思(精选6篇)11-21