七年级数学上册《绝对值》教案

时间:2025-02-06 10:54:45 赛赛 数学教案 我要投稿

七年级数学上册《绝对值》教案(通用11篇)

  作为一名教职工,通常会被要求编写教案,教案是教学活动的总的组织纲领和行动方案。那么问题来了,教案应该怎么写?以下是小编收集整理的七年级数学上册《绝对值》教案,希望能够帮助到大家。

七年级数学上册《绝对值》教案(通用11篇)

  七年级数学上册《绝对值》教案 1

  教学目标:

  1.了解绝对值的概念,会求有理数的绝对值;

  2.会利用绝对值比较两个负数的大小;

  3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力。

  教学过程

  一、重点、难点分析

  绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。

  教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。

  二、知识结构

  绝对值的定义绝对值的表示方法用绝对值比较有理数的大小

  三、教法建议

  用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的,初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即在教学中,只能突出一种定义,否则容易引起混乱,可以把利用数轴给出的定义作为绝对值的一种直观解释。

  此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数,“非负数”的概念视学生的情况,逐步渗透,逐步提出。

  四、有关绝对值的一些内容

  1.绝对值的代数定义

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零

  2.绝对值的几何定义

  在数轴上表示一个数的'点离开原点的距离,叫做这个数的绝对值

  3.绝对值的主要性质

  (1)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零

  (2)两个相反数的绝对值相等

  五、运用绝对值比较有理数的大小

  两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小

  比较两个负数的方法步骤是:

  (1)先分别求出两个负数的绝对值;

  (2)比较这两个绝对值的大小;

  (3)根据“两个负数,绝对值大的反而小”作出正确的判断

  七年级数学上册《绝对值》教案 2

  一、教学目标

  1、掌握绝对值的概念,有理数大小比较法则。

  2、学会绝对值的计算,会比较两个或多个有理数的大小。

  3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

  二、教学难点:

  两个负数大小的比较。

  三、知识重点:

  绝对值的概念。

  四、教学过程:

  (一)设置情境。

  1、引入课题。

  星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:

  (1)用有理数表示黄老师两次所行的路程。

  (2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  2、学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。

  3、观察并思考:

  画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

  4、学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

  例如,上面的问题中|20|=20|—10|=10显然|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。

  (二)合作交流。

  1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

  —3,5,0,+58,0.6。

  2、要求小组讨论,合作学习。

  3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则。

  (三)巩固练习。

  1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。

  2、结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:

  (1)把14个气温从低到高排列。

  (2)把这14个数用数轴上的点表示出来。

  3、观察并思考:

  (1)观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?

  (2)学生交流后,教师总结:

  14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

  4、想象练习:

  想象头脑中有一条数轴,其上有两个点,分别表示数—100和—90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

  数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。

  5、课堂练习例2,比较下列各数的大小。

  比较大小的过程要紧扣法则进行,注意书写格式。

  6、练习:第18页练习。

  (三)小结与作业。

  课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

  (四)本课作业。

  1、必做题:教产书第19页习题1,2,第4,5,6,10

  2、选做题:教师自行安排。

  五、本课教育评注。

  1、情景的`创设出于如下考虑:

  (1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。

  (2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。

  2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的"空间。

  3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。

  4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

  七年级数学上册《绝对值》教案 3

  一、学习与导学目标:

  知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;

  过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;

  情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。

  二、学程与导程活动:

  A、创设情境(幻灯片或挂图)

  1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和—8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。

  再如测量误差问题、排球重量谁更接近标准问题

  2、在讨论数轴上的点与原点的`距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。

  B、学习概念:

  1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作︱a︱(幻灯片)。因此,上述+10,—8的绝对值分别是10,8.

  如在数轴上表示数—6的点和表示数6的点与原点的距离都是6,所以,—6和6的绝对值都是6,记作︱—6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)

  2、尝试回答

  (1)︱+2︱=,︱1/5︱=,︱+8.2︱=;

  (2)︱—3︱=,︱—0.2︱=,︱—8.2︱=;

  (3)︱0︱= 。(幻灯片)

  思考:你能从中发现什么规律?引导学生得出:(幻灯片)

  性质:一个正数的绝对值是它本身;

  一个负数的绝对值是它的相反数;

  零的绝对值是零。

  如果用字母a表示有理数,上述性质可表述为:

  当a是正数时,︱a︱=a;

  当a是负数时,︱a︱=—a;

  当a=0时,︱a︱=0.

  解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:

  在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?

  3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。

  显然,结合问题的实际意义不难得到:—4—202。

  因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。

  再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用P19/6,8为素材)

  通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;

  两个负数,绝对值大的反而小。

  4、师生活动比较下列各对数的大小:P17例,P18练习。

  5、师生小结归纳(幻灯片)

  三、笔记与板书提纲:

  1、幻灯片

  2、师生板演练习P15/1

  四、练习与拓展选题:

  P19/4,5,9,10

  七年级数学上册《绝对值》教案 4

  教学目标

  1、知识与技能。

  ①能根据一个数的绝对值表示距离,初步理解绝对值的概念,能求一个数的绝对值。

  ②通过应用绝对值解决实际问题,体会绝对值的意义和作用。

  2、过程与方法

  经历绝对值的代数定义转化成数学式子的.过程中,培养学生运用数学转化思想指导思维活动的能力。

  3、情感、态度与价值观

  ①通过解释绝对值的几何意义,渗透数形结合的思想。

  ②体验运用直观知识解决数学问题的成功。

  教学重点难点

  重点:给出一个数,会求它的绝对值。

  难点:绝对值的几何意义、代数定义的导出。

  教与学互动设计

  (一)创设情境,导入新课

  活动:请两同学到讲台前,分别向左、向右行3米。

  交流:

  ①他们所走的路线相同吗?

  ②若向右为正,分别可怎样表示他们的位置?

  ③他们所走的路程的远近是多少?

  (二)合作交流,解读探究

  观察出示一组数6与—6,3.5与—3.5,1和—1,它们是一对互为________,它们的__________不同,__________相同。

  总结:例如6和—6两个数在数轴上的两点虽然分布在原点的两边,但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和—6的绝对值。

  绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│。

  想一想—3的绝对值是什么?

  七年级数学上册《绝对值》教案 5

  导学目标

  1、借助数轴,初步理解绝对值的概念,能求一个数的绝 对值,会利用绝对值比较两个负数的大小。

  2、通过应用绝对值解决实际问题绝对值的意义和作用。

  导学重点:

  正确理解绝对值的概念?

  导学难点:

  负数大小比较

  导学过程

  温故:

  1、下列各数中:

  +7,—2, ,—8?3,0,+0?01,— ,1 ,哪些是正数?哪些是负数?哪些是非负数?

  2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:

  —3,4,0,3,—1?5,—4, ,2?

  链接:

  问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?

  知新:

  1、什么叫绝对值?

  在数轴上,一个数所对应的点与 的 叫做这个 数的绝对值.例如+5的绝对值等于5,记作+5=5 ;—3的绝对值等于3,记作 。

  2、绝对值的特点有哪些?

  (1)一个正数的绝对值是 ;例如,4= , +7.1 = 。

  (2)一个负数的绝对值是 ;例如,-2= ,-5.2= 。

  (3)0的绝对值是 .

  容易看出,两个互为相反数的数的绝对值 .如—5=+5=5.

  练一练:1。已知| |=5,求 的值。

  2、填空:

  (1)+3的符号是_____,绝对值是_ _____;(2)—3的符号是_____,绝对值是______;

  (3)— 的符号是____,绝对值是______;(4)10—5的符号是_____,绝对值是______?

  3、填空:

  (1)符号是+号,绝对值是7的数是________;(2)符号是—号,绝对值是7的数是________; (3)符号是—号,绝对值是0?35的 数是________;(4)符号是+号,绝对值是1 的数 是________;

  4、(1)绝对值是 的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?

  (3)有没有绝对值是—2的数?

  3。理解:

  若用a表示一个数,当a 是正数时可以表示成a>0,当a是负数时可以表示成a<0,这样,上面的'绝对值的特点可用用符号语言可表示为:

  (1) 如果a>0,那么a=a;

  (2) 如果a<0,那么a=-a;

  (3) 如果a=0,那么a =0。

  4。 比较两个负数的大小

  由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大.负数的绝对值越大,表示 这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小.

  练一练: 比较 和 的大小

  七年级数学上册《绝对值》教案 6

  教学目标:

  知识目标:

  (1)理解绝对值的概念及表示法。

  (2)理解数的绝对值的几何意义。

  能力目标:

  (1)掌握求一个数的绝对值及有关的简单计算,

  (2)掌握绝对值等于某一正数的有理数的求法,探索绝对值的简单应用。

  情感目标:让学生经历绝对值的产生过程,体会数形结合思想。

  教学重点、难点:

  重点:绝对值的概念和求一个数的绝对值。

  难点:绝对值的几何意义。

  教学手段:

  多媒体(powerpoint)教学与板书相结合。

  教学过程:

  一、新课引入

  我们已经知道有理数在日常生活中应用广泛,与生产实践联系紧密,用正、负数可以来表示相反意义的量,而数轴使我们直观的感受到有理数中正、负数的区别和数在数轴上相应的位置。

  乘城市中的出租车去逛商店是我们经常经历的事,其中的数量关系与我们所学的有理数、数轴有密切联系。例如有2位同学在书店购买书籍后回家,一位同学乘上甲出租车向东行驶10Km到达A处,另一位同学乘上乙出租车向西行驶10Km到达B处。

  二、合作学习

  把全班同学分4—5组分组讨论完成下面的三个问题

  1:描述请大家用数轴来表示这一过程(记向东行驶的里程数为正)

  2:思考两位同学付费额度是否一样?为什么?

  3:结论付费额度与行驶方向有没有关系?

  然后请各组代表总结发言:(鼓励学生积极参与,并给予高度的评价)

  这两位同学由于乘车离开书店的距离一样,所以付费额度也是一样的,与行驶方向无关。说明在数轴上的A(+10)、B(—10)两点到原点(书店)的距离是一样的,都是10。同样数轴上+5和—5两点到原点的距离也是一样的。

  我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。(注意是离开原点的距离)

  如数轴上表示-5的点到原点的距离是5,所以—5的绝对值是5,记作;+5的绝对值也是5,记作。其实际意义是:数轴上+5这个点到原点的距离为5。(强调绝对值符号的书写格式)

  三、课内练习

  1、求下列各数的绝对值:-1.60-10+10同时说出它们的几何意义。

  2、说出下列各数的绝对值:-7-2.0501000

  由上述两题可概括出:(在教师的引导下让学生得出结论)

  一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,互为相反的两个数的绝对值相等。(注意一个数的`绝对值不可能是负数,而是非负数。)

  (一)典例分析

  1、求绝对值等于4的数?

  注:分析例题时尽量培养学生利用数轴来解决问题的能力。

  2、计算:

  四、反馈练习

  3、举一个生活中的实际例子,说明解决有的问题只需考虑数的绝对值。(如港口的吞吐量;一位学生上学、放学一共所走过的路等)

  4、填表:

  相反数

  绝对值

  21

  —0.75

  5、画一条数轴,在数轴上分别标出绝对值是6,1.2,0的数

  6、计算:

  五、探究学习

  1、某人因工作需要租出租车从A站出发,先向南行驶6Km至B处,后向北行驶10Km至C处,接着又向南行驶7Km至D处,最后又向北行驶2Km至E处。

  请通过列式计算回答下列两个问题:

  (1)这个人乘车一共行驶了多少千米?

  (2)这个人最后的目的地在离出发地的什么方向上,相隔多少千米?

  2、写出绝对值小于3的整数,并把它们记在数轴上。

  六、小结

  一头牛耕耘在一块田地上,忙碌了一整天,表面上它在原地踏步,没有踏出这块土地,但我们说,它付出了艰辛和汗水,因为它所走过的距离之和,有时候我们是无法想象的。这就是今天所学的绝对值的意义所在。所以绝对值是不考虑方向意义时的一种数值表示。

  七、布置作业

  做作业本中相应的部分。

  七年级数学上册《绝对值》教案 7

  教学目标:

  1、知识与技能:

  (1)借助数轴理解相反数的概念,会求一个数的相反数。

  (2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。

  2、过程与方法:

  在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。

  重点、难点

  1、重点:理解相反数的意义,会求一个数的相反数。

  2、难点:对相反数意义的理解。

  教学过程:

  一、创设情景,导入新课

  1、请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。

  二、合作交流,解读探究

  1、(出示小黑板)

  教师提出问题:上图中数轴上的点B和点D表示的数各是什么?有什么关系?

  学生活动:分小组讨论,与同伴交流。

  教师活动:请几位同学说出他们讨论的结果,指出点B表示+2.6,点D表示-2.6,它们只有符号不同,到原点的距离都是2.6。

  2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的相反数,也称这两个数互为相反数。

  0的相反数是0。

  3、学生活动:

  在数轴上,表示互为相反数的两个点有什么关系?

  学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。

  4、练习填空:

  3的相反数是;-6的相反数是;-(-3)=;-(-0.8)=;

  学生活动:在练习本上解答,并与同伴交流,师生共同订正。

  归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。

  三、应用迁移,巩固提高

  1、课本P10第1题。

  2、填空:

  (1)xx的相反数是;(2)xx的相反数是;(3)xx的相反数是2/3。

  3、如果一个数的相反数是它本身,则这个数是。

  4、若α、β互为相反数,则α+β= 。

  5、-(-4)是的相反数,-(-2)的相反数是。

  6、化简下列各数的符号

  -(-9)=; +(-3.5)= ;

  -=;-{-[+(-7)]}= 。

  7、若-x=10,则x的相反数在原点的侧。

  8、若x的.相反数是-3,则;若x的相反数是-5.7,则。

  四、总结反思

  本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

  五、课后作业

  课本P13习题1.2A组第3、4题。

  七年级数学上册《绝对值》教案 8

  一、教学目标:

  1.知识目标:

  ①能准确理解绝对值的几何意义和代数意义。

  ②能准确熟练地求一个有理数的绝对值。

  ③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

  2.能力目标:

  ①初步培养学生观察、分析、归纳和概括的思维能力。

  ②初步培养学生由抽象到具体再到抽象的思维能力。

  3.情感目标:

  ①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

  ②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的.自信心。

  二、教学重点和难点

  教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

  教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

  三、教学方法

  启发引导式、讨论式和谈话法

  四、教学过程

  (一)复习提问

  问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

  (二)新授

  1.引入

  结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

  2.数a的绝对值的意义

  ①几何意义

  一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|。

  举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

  强调:表示0的点与原点的距离是0,所以|0|=0。

  指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

  ②代数意义

  把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

  七年级数学上册《绝对值》教案 9

  一、教学目标

  1.初步理解绝对值的意义,掌握求有理数的绝对值的方法,并会求有理数的绝对值.

  2.利用绝对值解决?些简单的实际问题.

  3.使学生初步了解数形结合的思想方法.

  4.通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,体会绝对值的意义和作用,感受数学在生活中的价值.

  二、教法设计

  通过实体模型或问题实例创设学生参与情景,在自主看书寻找问题答案后探求绝对值的意义及应用.

  三、教学重点和难点

  重点:初步理解绝对值的意义,会求一个有理数的绝对值.

  难点:对绝对值意义的初步理解.

  四、课时安排

  1课时

  五、师生互动活动设计

  自主、探究、合作、交流.

  六、教学思路

  (一)、导入

  1.教师拿出准备好的数轴模型,让学生观察后摆放在讲台前,叫两个学生站在绳上标有点12、点6的位置,让其他学生观察度量后回答:这两个同学与原点的距离各是多少?

  另外叫两个学生分别站在绳上标有点一6、点一12的位置,其他学生观察度量后回答:这两个同学与原点的距离各是多少?

  (给学生充分的时间思考,相互讨论、探讨.)

  或:创设问题情景

  挂出画有数轴的`磁性黑板,两只小狗分别站在数轴上原点的左、右两侧3个单位的点上,向它离开原点的距离各是多少?(激情引趣,导人新课)

  2.概念的引述.

  教师引导学生看书自学后,举例说明:什么是一个数的绝对值?如何表示一个数的绝对值?

  (叫学生板书)

  (学生在自学的基础上,可相互合作、探讨,教师参与学生的讨论,并进行个别指导.)

  3.引导学生思考书中“想一想”:互为相反数的两个数的绝对值有什么关系?

  (在学生充分思考后,教师要引导学生相互说,并叫5个学生上黑板举例说明这个关系.)

  (二)、新知识运用

  例1:求下列各数的绝对位:(小黑板示)

  教师示范一题的解题格式,其余题目由学生独立完成.(培养学生规范化解题的良好习惯)

  四、知识拓展

  师生互动,先要求学??思考、解决,再在组内互相交流.

  1.(1)在数轴上表示下列各数:

  一1.5、一3、一1、一5.

  (2)求出以上各数的绝对值,并比较它们的大小.

  (3)你发现了什么?

  (培养学生独立思考解决问题的习惯,学会发现问题,总结规律.)

  2.如果=3.5,那么

  3.

  4.字母a表示一个正数,-a表示什么?- a 一定是负数吗?

  (字母表示数的意义,为下一章的代数式做准备.)

  视学生掌握知识的实际增况开展自编题,编出的题目先在小组内互相交流,再在小组内选出一题在全班交流.

  五、小结

  1.知识点:

  (1)绝对值的定义二

  (2)一个数的绝对值与这个数的关系.

  2.数学思想方法:数形结合的思想.(培养学生总结能力)

  七年级数学上册《绝对值》教案 10

  教学目标

  (1)掌握与()型的绝对值不等式的解法。

  (2)掌握与()型的绝对值不等式的解法。

  (3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;

  (4)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力;

  教学重点

  型的不等式的解法;

  教学难点

  利用绝对值的意义分析、解决问题。

  教学过程设计

  教师活动

  学生活动

  设计意图

  一、导入新课

  【提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明?

  【概括】

  口答

  绝对值的概念是解与()型绝对值不等值的概念,为解这种类型的绝对值不等式做好铺垫。

  二、新课

  【导入】 2的绝对值等于几?-2的绝对值等于几?绝对值等于2的数是谁?在数轴上表示出来。

  【讲述】求绝对值等于2的数可以用方程来表示,这样的方程叫做绝对值方程。显然,它的解有二个,一个是2,另一个是-2。

  【提问】如何解绝对值方程。

  【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?

  【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式的'解集就是表示数轴上到原点的距离小于2的点的集合。

  【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?

  【质疑】的解集有几部分?为什么也是它的解集?

  【讲述】这个集合中的数都比-2小,从数轴上可以明显看出它们的绝对值都比2大,所以是解集的一部分。在解时容易出现只求出这部分解集,而丢掉这部解集的错误。

  【练习】解下列不等式:

  【设问】如果在中的,也就是怎样解?

  【点拨】可以把看成一个整体,也就是把看成,按照的解法来解。

  所以,原不等式的解集是

  【设问】如果中的是,也就是怎样解?

  【点拨】可以把看成一个整体,也就是把看成,按照的解法来解。

  三、小结

  的解集是;的解集是

  解绝对值不等式注意不要丢掉这部分解集。

  或型的绝对值不等式,若把看成一个整体一个字母,就可以归结为或型绝对值不等式的解法。

  七年级数学上册《绝对值》教案 11

  教学目标

  1、知识与技能

  会利用绝对值比较两个负数的大小

  2、过程与方法

  利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力

  3、情感、态度与价值观

  敢于面对数学活动中的困难,有学好数学的自信心

  教学重点难点

  重点:利用绝对值比较两个负数的大小

  难点:利用绝对值比较两个异分母负分数的`大小

  教与学互动设计

  (一)创设情境,导入新课

  投影 你能比较下列各组数的大小吗?

  (1)│-3│与│-8│

  (2)4与-5

  (3)0与3

  (4)-7和0

  (5)0.9和1.2

  (二)合作交流,解读探究

  讨论交流 由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数

  思考 若任取两个负数,该如何比较它的大小呢?

  点拨 若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?

  【总结】 两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大

  注意

  ①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小

  ②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值

  ③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小,即:利用数轴来比较有理数的大小。

【七年级数学上册《绝对值》教案】相关文章:

数学教案-绝对值05-02

人教版新课标数学七年级上册《绝对值》最新表格式教案07-01

七年级数学:绝对值教案04-30

七年级数学上册《绝对值》教学反思05-01

绝对值初中数学教案05-06

小学绝对值数学教案05-06

数学教案-绝对值(一)05-02

七年级数学绝对值与相反数教案04-28

七年级数学绝对值教案有哪些内容04-28