《比例》六年级数学教案
作为一位杰出的教职工,总不可避免地需要编写教案,借助教案可以让教学工作更科学化。那要怎么写好教案呢?下面是小编收集整理的《比例》六年级数学教案,仅供参考,欢迎大家阅读。

《比例》六年级数学教案1
教学内容:教科书第50页例3,练习十一3~6题。
教学目标
1.使学生理解解比例的意义。
2.使学生进一步掌握比例的基本性质,学会应用比例的基本性质解比例。
3.让学生在解比例的过程中,培养学生主动学习知识的意识和能力,感受到学习数学的乐趣,增强学习的兴趣和自信。
教学重点:使学生掌握解比例的方法,学会解比例。
教学难点:建立解比例和解方程之间的联系。
教学准备:课件。
教学过程
一、复习准备
(1)什么叫比例?什么叫做比例的基本性质?
(2)下面哪一组中的两个比可以组成比例?用比例的基本性质判断。
18∶20和7.2∶8,100∶0.2和10∶0.002
学生独立完成后,抽取个别学生的答案在视频展示台上展示。
二、导入新课
教师:谁能很快说出下面比例中缺少的项各是几?(学生试说)
14∶21=2∶() ,1.25∶()=2.5∶4
教师:在一个比例式中,共有四项,如果已知其中的任何三项,要能很快求出这个比例中的另外一个未知项,就要用我们今天学的知识——解比例。
板书课题:解比例。
三、探究新知
1、教学例3
教师:像这样知道比例中的任意三项,求另外一个未知项叫做解比例。同学们能用以前学过的知识求出34∶12=x∶49中x的值吗?
引导学生先独立思考,再组织学生合作交流。交流中既要听取学生的意见,又要注意引导学生从多角度思考解决问题的方法。例如,把比看做除法,那么34∶12=x∶49就可以转化成34÷12=x÷49,学生就可以运用原来学习解方程的有关知识来解;也可以应用比例的基本性质,把34∶12=x∶49转化成12x=34×49来解。
教师:同学们真聪明,想出了这么多解决问题的.方法。下面请一个同学回答,你把34∶12=x∶49转化成12x=34×49来解,根据是什么?(根据比例的基本性质。)
2、巩固练习
教师:你能根据比例的基本性质,把下面的比例改写成含有未知数的乘法等式来解吗?在黑板上出示:
3∶4=x∶21 4∶13=9∶x x∶8=12∶32
学生解答,抽取几个学生的作业在视频展示台上展示,并集体订正。
3、教学"试一试"
出示9/6=x/4
教师:这个比例和前面几个比例有什么不同?(这个比例是分数形式。)
指出它的内项和外项。像这样的分数形式的比例,同学们会用比例的基本性质来解吗?想一想,怎样解?
学生讨论并解答,完成后,请学生说一说是怎样求出x的值。
教师:解分数形式的比例时要注意什么?
引导学生说出要注意用交叉法找出比例中的两个内项和两个外项。
教师指导学生进行验算,注意书写格式的规范性。
四、巩固练习
(1)学生独立完成练习十一的第3题和第5题。
(2)讨论完成练习十一的第4题。
教师先引导学生做:这道题需要逆用比例的基本性质。在比例里,两个内项的积等于两个外项的积。这道题是知道两个积相等,如果我们把左边的两个数当作比例的内项,那么右边两个数就应当作为比例的外项,这样就可以写出比例式了。如果我们把左边的两个数当作比例的外项,那么右边两个数就应当作为比例的内项,也可以写出比例式。
学生自己写出比例式,课件显示:
如果把6,1.2作为外项,有下面这些比例式:
6∶x=3.6∶1.2 ,6∶3.6=x∶1.2
1.2∶x=3.6∶6 ,1.2∶3.6=x∶6
如果把6,1.2作为内项,有下面这些比例式:
x∶6=1.2∶3,6 x∶1.2=6∶3.6
3.6∶6=1.2∶x ,3.6∶1.2=6∶x
教师:写比例时,我们要按照一定的顺序来写才能写出所有的比例式,即不重复又不遗漏。
(3)学生独立完成练习十一的第6题,然后教师讲评。
五、全课总结
(1)什么叫解比例?
(2)用比例的基本性质解比例的一般方法。
①根据比例的基本性质把比例改写成方程。
②根据以前学过的解方程的方法求解。
(3)这节课你运用了哪些学习的方法?还有哪些问题?
《比例》六年级数学教案2
教学内容:教材第115页正、反比例的意义和正、反比例应用题、“练一练”,练习二十二第1、2题。
教学要求:
1、使学生更清楚地认识正比例和反比例关系的特征,能正确判断成正比例关系或反比例关系的量。
2、使学生进一步掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、反比例关系的应用题,进一步培养学生分析、推理和判断等思维能力。
教学过程:
一、揭示课题
这节课,复习正、反比例关系和正、反比例应用题。通过复习,要进一步认识正、反比例的意义,掌握正、反比例应用题的数量关系、解题思路和解题方法,能更正确地判断成正、反比例关系的量,正确地解答正、反比例应用题。
二、复习正、反比例的`意义。
1、复习正、反比例的意义。
提问:如果用x和y表示成比例关系的两种相关联的量,那么,什么情况下成正比例关系,什么情况下成反比例关系?
想一想,成正比例关系和成反比例关系的两种量有什么相同点和不同点?
指出:正比例关系和反比例关系的相同点是:都有相关联的两种量,一种量随着另一种量的变化而变化。不同点是:成正比例关系的两种量中相对应数值的比值一定,成反比例关系的两种量中相对应数值的积一定。
2、判断正、反比例关系。
(1)做“练一练”第1题。
指名学生口答。
提问:判断是不是成比例和成什么比例的根据是什么?
(2)做练习二十二第1题。
指名学生口答。
3、判断x和y这两种量成什么关系,为什么?
指出:我们根据正、反比例关系的特点,可以判断两种相关联的量成什么比例。如果一道题里两种量成正比例或反比例关系,我们就可以应用比例的知识,根据比值相等或者积相等的数量关系来解答。
三、复习正、反比例应用题。
1、做“练一练”第2题第1题。
让学生读题,判断两种量成什么比例。
提问:这道题成正比例关系,要根据什么相等来列式解答?
指名一人板演,其余学生做在练习本上。
集体订正,突出列式的等量关系是比值一定。
2、做“练一练”第2题第(2)题。
指名一人板演,其余学生做在练习本上。
集体订正。
提问:这道题是怎样想的?成反比例关系的应用题,要根据什么来列式解答?
3、启发学生思考:
你认为正比例应用题实际上是我们过去学过的哪一类应用题?反比例应用题是哪一类应用题?
怎样解答正、反比例应用题?
指出:用比例知识解答应用题,要先判断两种相关联的量成什么比例。如果成正比例,根据比值相等列等式解答;如果成反比例,根据积相等列等式解答。
四、课堂作业
练习二十二第2题
《比例》六年级数学教案3
一、教学内容:
课本第75页的例5及相应的“试一试”“练一练”、练习十四的第1~4题。
二、教学重难点、生长点:
1.重点:教学按比例分配的实际问题。
2.难点:理解三个数量连比的意义,正确计算按比例分配的实际问题。
3.生长点:学习了比的意义、理解部分与整体的比及分数乘法的意义基础上教学本课时。
三、教材地位分析:
本课教学,重在引导学生应用比的意义解答有关按比例分配的'实际问题。学生在学习的过程中,进一步体会数学知识间的内在联系,建立合理的认知结构。
四、教学目标:
1.让学生认识按比例分配的实际问题,探索并掌握这类实际问题的解答方法,认识连比。
2.让学生进一步体会数学知识之间的内在联系,培养思维的灵活性,增强分析问题、解决问题的能力。
3.让学生进一步体会数学与现实生活的联系,增强数学应用意识,增强学好数学的信心。
五、教学过程:
(一)复习
六(3)班男、女生人数的比是13:7。
()人数是()人数的()/()。
让学生填出不同的答案。
(二)教学例5
1.出示例5:给30个方格分别涂上红色和黄色,使红色与黄色方格数的比是3:2。
问:你是如何理解3:2的?(估计学生能说出红色与黄色的比是3:2,黄色与红色的比是2:3;红色与格子总数的比是3:5,黄色与格子总数的比是2:5)
当学生说到红色(黄色)与格子总数的比时,问:格子总数是多少?那你能算出红色的有多少格、黄色的有多少格吗?
学生做题,交流解答方法。
说明:在实际生活中,很多情况下并不只是把一个数量平均分,使每部分都一样多,而是在平均分的基础上按一定的比进行分配。这道题就是把30个方格按3:2进行分配。
2.验证。你做出的结果是不是正确呢?我们可以把得数放到题目中去检验一下。与同桌说说你的检验方法。
板书检验方法:18+12=30(格)18:12=3:2
3.教学“试一试”。
学生读题后,说说是如何理解1:2:3的?(引导学生说出是把30格按照红色1份、黄色2份、绿色3份来涂色)
谈话:三个数或更多个数组成的比叫连比,它只表示三个量或更多个量各占几份,而不能理解为连除,这与两个数的比是不同的。根据红、黄、绿的比是1:2:3,你能想到格子总数被平均分成几份了吗?每种颜色的格子数各有几格?
学生做题,交流算法。
引导学生认识:都是把总数按照一定的比分成几部分,求每部分是多少,解答时都可以把比看成各占多少份,先求出每份是多少,再分别求几份是多少,也可以把比转化成分数,即各部分占总数的几分之几,再用分数乘法计算。
4,做“练一练”。
做第1小题。本题较为简单,让学生独立解答。
做第2小题。
本题稍有难度,先让学生读题。
问:你觉得怎样分配这些巧克力比较公平?(估计大部分学生会说按人数平均分;可能会有极少数人说按班级平均分)
问:“按班级人数”平均分,也就是按怎样的比进行分配?再让学生算一下每个班各分到多少巧克力。
问:如果按班级平均分,又该怎样分?口算出结果。能不能把平均分也看作按比分?按什么样的比分?(1:1:1)可见平均分是按比分的一种特殊情况。
(三)巩固、拓展练习
1.做练习十三第2题。
《比例》六年级数学教案4
教学目的:通过混合练习,加深学生对正比例和反比例的意义的理解,提高判断能力。
教学过程:
一、引入
教师:前面我们学习了正比例和反比例的意义.上节课我们又把它们进行了比较,你们会根据正比例和反比例的意义,比较熟练地判断两种相关联的量是成正比例还是成反比例吗?
二、课堂练习
1.分析、研究第3题。
让学生先说出长方形的长、宽、面积三个量中.其中一个量与另外两个量的关系,教师板书出来:长宽=面积
= 长 =宽
提问:
当面积一定时,长和宽成什么比例关系?
当长一定时,面积和宽成什么比例关系?
当宽一定时,面积和长成什么比例关系?
教师:通过上面的分析,我们知道:要判断三种相关联的量在什么条件下组成哪种比例关系,我们可以先写出它们中的.一种量与另外两种量的关系,再进行分析,。
2.第4题,让学生仿照第3题的方法做。订正后,教师板书如下:
每次运货吨数运货次数=运货的总吨数(一定) 每次运货吨数 与运货次数 =运货次数(一定) 成反比例关 系。
运货的总吨 =每次运货吨数(一定) 数与运货次 数成正比例 关系
3.第5题,让学生独立做,教师巡视,注意个别辅导。
4.第6题,先让学生自己判断,然后指名回答,第(1)小题成反比例,第(2)、(4)、(6)小题成正比例,第(3)、(5)小题不成比例。
5.第7题,学生独立解答后,选一题说说是怎样解的。
6.学有余力的学生做第8题。
《比例》六年级数学教案5
教学内容:
教材第111、112页的内容复习比例的意义和基本性质,以及解比例、比例尺,完成练习二十一中的其余习题。
教学要求:
1、使学生加深认识比例的意义和基本性质,能判断两个比能不能组成比例,能比较熟练地解比例。
2、使学生掌握比例尺的意义,能正确地进行有关比例尺的计算,培养学生运用知识的能力。
教学过程:
一、提示课题
1、说出下面比的的比值。
4:5 1:2 8:10 0。2:
学生口答时老师书出比值。
2、引入课题。
在复习了比的知识后,这节课复习比例的知识和给与比例尺的计算。
二、复习比例知识
1、复习比例的意义。
⑴提问:上面的'比能组成哪些比例?为什么?
什么叫比例?
你能说出比例里各部分的名称吗?
⑵学生练习。
让学生在练习本上任意写一个比和一个比例。
指名一人口答所写的比和比例,老师板书。
提问:比和比例有什么区别?
说明:比和比例的意义不同,比表示两个数相除的关系,比例表示两个比的相等关系;组成比和比例的项不同,比只有两项,比例有四项。
2、复习比例的基本性质。
⑴提问:比例的基本性质是什么?
请同学们按照比例的基本性质,在课本第111页上根据0。4:3=2:15,写出内项积等于外项积的式子。
追问:比例的基本性质和比的基本性质有什么不同?
⑵解比例。
学习比例的基本性质有什么作用?
做“练一练”第2题。
指名四人板演,其余学生分两组,分别在练习本上做前两题和后两题。
集体订正,选择两题让学生说一说第一步的依据。
提问:大家总结一下解比例的过程。
指出:解比例要先根据比例的基本性质,写成积相等的式子,再求出等式里未知的因数x。
三、复习比例尺计算
请同学们自己阅读第112页上关于比例尺的内容,进一步弄清什么是比例尺,比例尺有几种形式。
提问:什么是比例尺?
比例尺有哪几种形式?
谁来举一个数值比例尺的例子,并且说明它实际表示什么意思?
课本上的线段比例尺表示怎样的实际意义?
让学生把课本上的线段比例尺改写数值比例尺。
学生改写后口答,老师板书。
3、做“练一练”第3题。
请同学们应用解比例的方法做“练一练”第3题。
指名一人板演,其余学生做在练习本上。
集体订正,让学生说说是怎样想的。
指出:求图上距离或实际距离,可以先设未知数为x,再根据比例尺的意义列出比例,然后解比例求出结果。
四、综合练习
1、归纳复习内容
让学生说一说本节课复习的具体内容。
2、做练习二十一第9题。
学生先自己思考,然后指名口答。
3、做练习二十一第11题。
让学生写在练习本上。
指名口答,老师板书。说说应怎样想。
4、做练习二十一第13题。
⑴做第①题。
指名板演,其余学生做在练习本上。
集体订正。
提问:怎样求一幅图的比例尺?
⑵讨论第②、③题。
提问:求出这幅图的比例尺后,下面两题可以怎样解答?
5、讨论练习二十一第14题。
让学生读题。
这两题有什么相同和不同的地方?
想一想,解答这两题应该有什么不同?(强调要注意份数与数量之间的对应关系)
五、讲解思考题
让学生读题。
提问:如果照按比例分配问题思考,还需要知道什么条件?
现在已知的比的条件怎样。
你能应用比的基本性质,把这个比改写成甲数、乙数、丙数三个数的比吗?
请大家课后先把这两个条件化成甲、乙、丙三个数的比,再自己试一试,求出三个数各是多少。
六、布置作业
课堂作业:练习二十一第12题⑴、⑶、⑸,第13题⑵、⑶,第14题。
家庭作业:练习二十一第12题⑵、⑷、⑹。
《比例》六年级数学教案6
教学内容
教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。
教学目标
1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。
2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。
教学重点
认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。
教学难点
理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
教学准备
教具:多媒体课件。
学具:作业本,数学书。
教学过程
一、联系生活,复习引入
(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。
(2)揭示课题。
教师:在上面的表中,有哪两种量?(水费和用水量、总价和数量)在我们平时的生活中,除了这两种量,我们还要遇到哪些数量呢?
教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的.一些规律和特征。
二、自主探索,学习新知
1.教学例1
用课件在刚才准备题的表格中增加几列数据,变成表。
教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。
教师根据学生的回答将表格完善,并作必要的板书。
教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。
板书:相关联
教师:你们还发现哪些规律?
学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:
教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。
板书:
2.教学试一试
教师:我们再来研究一个问题。
课件出示第52页下面的试一试。
学生先独立完成。
教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?
教师根据学生的回答归纳如下:
表中的路程和时间是相关联的量,路程随着时间的变化而变化。
时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。
路程与时间的比值是一定的,速度是每时80 km,它们之间的关系可以写成路程时间=速度(一定)
3.教学议一议
教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?
引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。
教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。
4.教学课堂活动
教师:请大家说一说生活中还有哪些是成正比例的量。
三、夯实基础,巩固提高
(1)完成练习十二的第1题。
教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?
学生独立思考,先小组内交流再集体交流。
(2)完成练习十二的第2题。
四、全课小结
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
《比例》六年级数学教案7
l.使学生理解比例的意义和基本性质,能根据比例的意义和基本性质写出比例,判断几个数是不是成比例;会解比例。
2.使学生理解正、反比例的意义,认识正比例关系与反比例关系的联系和区别,能够正确判断成正、反比例的量,会用比例知识解答比较容易的应用题。
3.使学生认识比例尺的意义,能够应用比例的知识,求出平面图的比例尺以及根据比例尺求图上距离或实际距离。
4.通过比例的教学,使学生认识比例知识在工农业生产和日常生活里的实际应用,进一步受到辩证唯物主义观点的启蒙教育。
单元教学重点:理解比例的意义和基本性质。
单元教学难点:认识正比例关系与反比例关系的联系和区别。
(一)比例的意义和基本性质
教学内容:教材第30~31页比例的意义和基本性质,练习六第1~5题。
教学要求:使学生理解比例的意义和基本性质,能用比例的意义或性质判断两个比成不成比例;通过教学培养学生初步的综合、概括能力。
教学重点:理解比例的意义和基本性质。
教学难点:用比例的意义或性质判断两个比成不成比例。
教学过程:
一、复习旧知
l.什么叫做两个数的比?请你说出两个比。(教师板书)
2.什么是比的比值?上面两个比的比值是多少?
3.引入新课。
我们已经认识了比,知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。(板书课题)
二、教学新课
1.教学比例的意义。
让学生算出下面各比的比值,再比较每组里两个比的比值有什么关系。(指名板演)
(1) 3 :5 24 :40 (2) : 7.5 :3
追问:比值相等,说明每组里两个比怎样?
说明3 :5的比值和24:40的比值都是 ,比值相等,也就是两个比相等,可以写成:
3 :5=24 :40(板书)这个式子表示两个比怎样? : 和7.5 :3也有怎样的关系?为什么?板书: : =7.5 :3 这个式子也表示什么?谁来说一说,上面两个等式表示的是怎样的式子?指出:表示两个比相等的式子叫做比例。
2.下面两个比之间的哪些○里能填=,为什么?
1 :2○3 :6 0.5 :0.2○5 :2
1.5 :3○15 :3 :2○ :1
提问:填了等号后的式子是什么? 1.5 :3和15 :3为什么不能组成比例?要判断两个比能不能组成比例,可以看它们的什么?指出:要判断两个比是不是相等,可以看比值是不是相等;也可以把两个比化简后看是不是相同的两个比。
3.教学例1。
出示例1,让学生先写出两次买练习本的钱数和本数的比。提问:怎样判断这两个比能不能组成比例?让学生判断并写出比例。提问:能不能组成比例?(板书比例式)为什么?强调:只有两个比值相等的比才能组成比例。
让学生根据比例的意义,在( )里填上适当的数。
3 :6=5 :( ) 0.8 :( )=1 :
如果学生有困难,启发用比值相等的方法推算。填写以后,提问学生:为什么填这个数?
4.教学比例的基本性质。
向学生说明比例各部分的名称。
让学生看开始组成的两个比例,说一说其中的内项和外项。让学生计算上面比例里两个外项的.积和两个内项的积,并要求观察,从中发现什么。让学生口答结果。提问:从上面的计算里,你发现了什么,出示比例的基本性质,并让学生说一说。如果把比例写成分数形式,请你说一说外项和内项。提问:在这个比例里交叉相乘的积有什么关系?追问:为什么交叉相乘的积相等?
5.判断能否组成比例。
出示3.6 :1.8和0.5 :0.25。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:2.6 :1.8和0.5 :0.25能组成比例吗?指出:根据比例的基本性质,也可以判断两个比能不能组成比例,判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。
三、巩固练习
1. 提问:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎样判断两个比能不能组成比例?
2. 完成练一练。
指名4人板演.其余在下面练习。然后集体订正,让学生说说是怎样判断的,并说明可以用两个比是不是相等判断,也可以用比例的基本性质判断。
3.做练习六第1题。
让学生做在练习本上。如果能组成比例就再写出比例。提问练习情况并板书,让学生说明为什么。
4.做练习六第2题。
让学生判断,在练习本上写出来。提问:哪一个比和 :4组成比例?为什么,(比值相等,或化简后两个比相同)
5.完成练习六第3题。
学生先观察、计算,然后口答,说明理由。
四、全课小结
这堂课学习了什么内容?什么叫做比例?比例的基本性质是什么?可以怎样判断两个比能不能组成比例?
《比例》六年级数学教案8
教学内容:练习八的第59题。
教学目的:通过练习,使学生理解和掌握用正比例,反比例的知识解答应用题的
方法。
教学过程:
一、复习
1.什么叫成正比例的量?它的关系式是什么?
2.什么叫成反比例的量?它的关系式是什么?
3.做练习八的第5题:判断下面每题中的两种量成什么比例关系。
二、课堂练习
教师:上节课我们学习了用正比例、反比例的意义和判断来解应用题,今天我们要通过练习,进一步理解和掌握用正比例、反比例意义和判断来解答应用题的方法。
1.做练习八的第6题。
指名读题,让学生自己解答。集体订正时,请一个同学讲一讲,自己是怎样想的?教师板书; =
教师:如果把这道题的第三个条件和问题改成要晒17550吨盐,需要多少吨海水?该怎样解答?
让学生口头列出比例式,教师板书出来。
教师小结:像这道题,问题虽然变了,但题中基本数量关系没有变。晒出的盐和海水的.吨数成正比例关系,解答这样的应用题的关键:一是要正确判断相关联的两种量是成什么比例,二是要找准相关联的量中相对应的数:
2.做练习八的第7、8题。
集体订正后,指名讲一讲是怎样想的。
3.做练习八的第9题。
做题前,提示学生选用哪三个数据都可以,但所叙述的事情要符合实际情况。订正时,如果学生在编题中的语言不规范,要注意纠正。
《比例》六年级数学教案9
教学内容:
用比例知识解答应用题。
教学目标:
1.通过复习,使学生进一步掌握用正、反比例关系解答应用题的数量关系和解题方法,提高解答此类题的能力。
2.培养学生的判断能力、灵活运用知识的能力。
3.培养学生认真审题、认真思考的良好学习习惯。
教学过程:
1.基础知识训练。
判断下面各题中的两种量成不成比例?成什么比例?(口答。)
(1)工作总量一定,工作效率和工作时间。
(2)速度一定,路程和时间。
(3)绳子的长度不变,剪下的米数和剩下的米数。
(4)单价一定,总价和数量。
(5)煤的总量一定,每天烧煤量和能够烧的天数。
(6)圆的半径和它的面积。
学生回答后,可让他们说说正、反比例关系的相同点及不同点,正、反比例的判断方法。
[订正:(1)成反比例(2)成正比例(3)不成比例(4)成正比例(5)成反比例(6)不成比例]
2.对比练习,加深理解。
教师谈话:我们已经学习了正、反比例的意义及正、反比例的应用题,这一节课要复习用比例的知识解答应用题。
(1)教师提问:用正、反比例知识解答应用题的步骤是什么?关键是什么?
先判断题中的数量关系成不成比例,成什么比例;再根据题中的比例关系,找到等量关系;然后把其中的未知数量用x表示,列出方程解答。关键是正确判断题中的数量关系成不成比例,成什么比例。
(2)基本练习,区分比较。
出示复习题。(全班同学动笔完成,指名板演。)
①修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条路共用几天?
②修一条公路,计划每天修0.5千米,24天完成。实际每天修0.6千米。实际多少天修完?
[订正:
①解:设修完这条路共用x天。
答:修完这条路共用24天。
②解:设实际x天修完。
答:实际20天完成。]
订正时,可让学生说说解答正、反比例应用题的相同点和不同点是什么?
[相同点是解题步骤和解题关键相同;不同点是正比例应用题根据商一定列比例式,反比例应用题根据积一定列比例式,所列出的比例式的形式不同。]
(3)变式练习,加深理解。
出示复习题。
①修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条公路还要多少天?
②修一条公路,计划每天修0.5千米,24天完成。实际每天多修0.1千米。实际多少天可以修完?
指导学生审题,并与前面的`基本题进行比较,找出它们的相同点和不同点,然后让学生独立解答,指名板演。学生可能有如下的解法:
①解法一:
解:设修完这条路还要x天。
解法二:
解:设修完这条路一共用x天。
答:修完这条路一共用21天。
②解:设实际x天可以修完。
(0.5+0.1)x=0.5×24
0.6x=12
x=20
答:实际20天可以完成。
订正时,重点让学生说说这两题在列式时和前面基本题有什么不同,为什么?(强调列式时要注意对应关系。)
(4)多种解法,培养能力。
教师谈话:以上两题你们可以用其它方法解答吗?试一试。
学生独立解答,指名板演。
[订正:
①(12-1.5)÷(1.5÷3)=21(天)
或:12÷(1.5÷3)-3=21(天)
②24×0.5÷(0.5+0.1)=20(天)]
订正时,可先让学生说说解题思路,然后比较算术解法和用比例知识解答各自的优点。在此基础上,教师小结:这些应用题用算术方法解,计算时比较方便,但是遇到稍复杂的题目,用比例知识列方程解答容易思考。今后解答这类题时,可以根据具体情况,灵活选用适当的方法解答。
3.巩固练习,灵活运用。
(1)用比例知识解答。(全班动笔完成。)
①某车队运送一批救灾物资,原计划每小时行40千米,7.5小时到达灾区。实际每小时行了50千米。照这样计算,行完全程需要多少小时?
②100克蜂蜜里含有34.5克葡萄糖。照这样计算,2千克蜂蜜含有多少克葡萄糖?多少克蜂蜜里含有207克葡萄糖?
[订正:
①解:设行完全程用x小时。
50x=40×7.5
x=6
②解:设20xx克蜂蜜含有x克葡萄糖。
解:设x克蜂蜜里含有207克葡萄糖。
(2)选择合适的方法解答。(全班动笔完成。)
①学校买来塑料绳135米,先剪下9米做了5根跳绳。照这样计算,剩下的塑料绳还能做几根跳绳?
②生产小组加工一批零件,原计划用14天,平均每天加工1500个零件。任务?
[订正:①(135-9)÷(9÷5)=70(根)
或:135÷(9÷5)-5=70(根)
订正时,可让学生说说解题思路,如用其它的方法,只要列式合理,计算正确,就算对。
(3)用多种方法解。(全班动笔完成。)
大齿轮与小齿轮的齿数比是4∶3,大齿轮有36个齿,小齿轮有多少个齿?
(4)思考题。(供学有余力的学生解答)
一间长4.8米,宽3.6米的房间,用边长0.15米的正方形瓷砖铺地面,需要768块。在长6米,宽4.8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0.2米的正方形瓷砖,要用多少块?
[提示:如果瓷砖的大小不变时,房间地面的面积与瓷砖的块数成正比例,所以只要求出两个房间地面的面积,就可以求出第二个房间需要多少块瓷砖。解法是:
解:设需用x块瓷砖。
如果都是在第一个房间铺,瓷砖的大小变了,总面积一定,瓷砖的块数与每块瓷砖的面积成反比例。(注意这里是与瓷砖的面积成反比例,而不是与瓷砖的边长成反比例。)解法是:
解:设要用x块瓷砖。
0.152×768=0.22×x
x=432]
4.布置作业。(略)
《比例》六年级数学教案10
教学目标:
在巩固正反比例的意义和正方比例的判断方法上,通过比较观察,理解并掌握正、反比例的意义和判断方法的差异,明确在同一组数量关系中,什么量一定时,另外两种量成正比例关系;什么量一定时,另外两种量成反比例关系,并能正确地判断。
教学重点、难点:
区分正反比例的差异
教学过程:
一、复习
1、前面一段时间我们学习哪两种比例关系?说说你的理解!
板书:正比例、反比例(学生回顾正反比例)
2、出示小黑板:
表一、
总价(元)
8
16
40
80
160
数量(件)
1
2
5
10
20
( )和()是两种相关联的量,()随着()而变化,()一定。所以()和()成()关系。
表二、
单价(元)
80
40
20
10
5
数量(件)
1
2
4
8
16
让学生先完成表一的问题,在让学生如同表一的问题完成表二,书写在作业作上,请两名学生说一说。
3、想一想:单价、数量、总价这三种量、每两种之间存在怎么样的比例关系?它们的条件是什么?
二、总结问题、比较正反比例
1、
单价一定,数量和总价成正比例关系。
数量一定,单价和总价成正比例关系。
总价一定、单价和数量呈反比例关系。
小练笔:请学生举几个数量关系说一说,同桌交流,汇报
2、正反比例比较
观察表一和表二以及正反比例的知识,比较正反比例
正比例
反比例
相同点
两种相关联的量
不同点
变化方向一致
两种量相对应的`两个数的比值一定
变化方向相反
两种量相对应的两个数的乘积一定
三、巩固练习
练一练1、2、3
4、A、B、C三种量的关系是:
如果A一定,那么B和C成()比例;
如果B一定,那么A和C成()比例;
如果C一定,那么A和B成()比例。
在此基础上拓展:
1、,那么和成()关系;
2、,那么和成()关系;
3、,那么和成()关系;
判断:
(1),圆周率一定,圆的周长和相应的直径成正比例;
(2),圆的直径一定,圆周率和相应的周长成正比例;
(3),圆的周长一定,圆周率和相应的直径成反比例;
练一练5、判断成不成比例?成什么比例?
四、小结
正反比例的区别与判断
课后反思:
本堂课是在学生学习了正比例和反比例的基础上进行的一堂正反比例的比较的综合课,整堂课主要是让学生通过一定的练习比较观察使得学生自主的归纳出正反比例的异同,使得学生能够更好的明确正反比例的意义和判断。因此整堂课学生的参与的积极性比较高,基本上的学生都能够参与到课堂的教学中来。
在整个备课过程中,根据教学内容的要求,载客后的练习中补充了带有未知数的三道练习让学生判断成不成比例,成什么比例,提高学生对数学的积极性和杰却问题的能力。与此同时还安排了一个判断题,由于前面都遇到有一个数量关系可以得出一种量一定,另外两种量的比例关系,可是这个问题就存在有这样的问题,因为圆周率是一定的,通过这个题的练习使得学生更好的理解正反比例的条件,两种相关联的量,一种量变化另一种量也随着变化。
再602班上课的时候,在出示小黑板的时候,没有先让学生回顾正反比例的知识,学生的课堂注意力没有及时地吸引过来,于是在第二堂课的时候,求安排了这样一个环节,让学生回顾知识,并吸引学生注意。还有就是表意于表二的利用,在第二堂课上比第一堂提高了,消除了学生再次整理信息所消耗的时间,提高了课堂效率。
《比例》六年级数学教案11
教学要求:
1、使学生认识解比例的意义,学会应用比例的基本性质解比例。
2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。
教学重点:认识解比例的意义。
教学难点:应用比例的基本性质解比例。
教学过程:
一、复习引新
1.做第32页复习题。
出示复习题。让学生先思考可以怎样想。[可以用求已知比比值的方法来确定里的数;也可以用比的基本性质,把已知的一个比的前项、后项同时扩大。]让学生根据思考的方法在括号里填上数。指名口答结果,老师板书括号里的数。
2.根据比例的基本性质把下面的比例改写成积相等的式子。(口答)
4:3=2:1.5=x:4=1:2
提问;根据积相等的式子,你能求出最后一题里的x吗?
3.引入新课。
在上面两题里,第1题是求比例里的`未知项。(板书:求比例里的未知项)从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题)现在,我们就应用比例的基本性质来解比例。
二、教学新课
1、教学例2。
出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。
2、教学例3。
出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。
3、教学“试一试”。
提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。
4、小结方法。
提问:你认为根据比例的基本性质要怎样解比例?
三、巩固练习
1、做“练一练”。
指名四人板演。其余学生分两组,每组两道题,做在练习本上。
2、做练习六第8题。
让学生做在课本上,指名口答。
3、做练习六第l0题。
学生分两组,每组一题,做在练习奉上。要求写出检验过程。指名口答x的值和检验过程,老师板书检验过程。并说明检验时把x代入原来的比例,看两边比的比值是否相等。
4、做练习六第11题。
学生口答、老师板书,看能写出多少个比例。
四、讲解思考题
提问:根据题意,两个外项正好互为倒数,你想到什么?(积是1)两个外项的积已知是1,你能求另一个内项吗?
五、课堂小结
这堂课学习的什么内容?应用比例的基本性质怎样解比例,
六、布置作业
课堂作业:练习六第6题第(1)~(4)题,第7题。
家庭作业:练习六第6题第(5)、(6)题,第9题和思考题。
教学目标:
1、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,
2、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。
3、培养学生的判断分析推理能力。
《比例》六年级数学教案12
教学目标
1.使学生理解解比例的意义。
2.使学生掌握解比例的方法,会解比例。
教学重点
使学生掌握解比例的方法,学会解比例。
教学难点
引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已学过的含有未知数的等式。
教学过程
一、导人新课教师:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以解决什么问题?
1、应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?
(1)6:10和9:15
(2)20:5和4:1
(3)5:1和6:2
这节课我们还要继续学习有关比例的知识,这节课我们要学习解比例。(板书课题)
二、新授教学
(一)揭示解比例的意义。
1.将上述两题中的任意一项用x来代替(可任意改换一项),讨论:如果已知其中三项,可不可以求出这个比例中的另外一个未知项?说明理由。
2.学生交流
根据比例的基本性质,如果已知比例中的'任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项。
3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例。
(二)教学例题。
解比例2:7=16:x
1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解。
2.组织学生交流并明确。
(1)根据比例的基本性质,可以把比例改写为:2x=7×16
(2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解。
(3)规范并板书解比例的过程。
(4)指导学生进行检验。
(5)看书质疑。
3.练习:课本P66练一练第3题。
4.小结
这节课我们学习了解比例。想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可。
三、巩固练习
(1)根据比例的基本性质,将下列各比例改写成含有未知数的等式。
(2)竞赛练习,提高学生做题兴趣。
课本P67页练习九的第4题。
(四人小组共同完成,小组长分配组员每人做一小题,做完后互相交换检查,看看哪个小组完成得又快又准。)
(3)课本P67页练习九第7题。
(4)深化练习。
课本P67页练习九第5题。
(四人小组互相讨论共同完成)
四、全课小结
同桌互相说一说你今天学到了什么?
五、布置作业
课本P67页练习九第6题。
《比例》六年级数学教案13
教材分析
本课教学内容是课程标准人教版六年级32、33页的“比例的基本性质”。这部分内容是在学生初步理解比例意义的基础上教学的,通过教学,使学生认识比例的“项”以及“内项”和“外项”,理解并掌握比例的基本性质;让学生在尝试探索的过程中进一步培养比较、概括的能力,发展符号意识。
学情分析
本班学生基础能力中等,平时上课发言的学生不是很多,对于这个比例的基本性质的学习是第一次的接触,但本节课难度不是很大,学生领会的能力相信还是可以的。
教学目标
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
教学重点和难点
理解并掌握比例的基本性质;引导观察,自主探究发现比例的基本性质
教学过程
(一)、复习导入
1、我们已经认识了比例,谁能说一下什么叫比例?
2、应用比例的意义判断下面的比能否组成比例。
0.5:0.25和0.2:0.4∶和12∶91∶5和0.8∶4;
7∶4和5∶380∶2和200∶5
(一是看两个比的比值是否相同,二是看他们化成最简比是否相同)
3、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例)
板书:比例的基本性质
(二)、探究新知
1、教学比例各部分的名称.
同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第34页看看什么叫比例的项、外项和内项。
(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。学生回答的同时,
板书:
组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2.4:1.6=60:40
外项内项学生认一认,说一说比例中的外项和内项。
如:
2、教学比例的基本性质。
(1)教师:比例有什么性质呢?现在我们就来研究。
(板书:比例的基本性质)
学生分别计算出这个比例中两个内项的积和两个外项的积。
教师板书:
两个外项的积是2.4×40=96
两个内项的积是1.6×60=96
(2)教师:你发现了什么,
两个外项的积等于两个内项的'积
是不是所有的比例都存在这样的特点呢?
学生分组计算前面判断过的比例。
(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.)
(4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。教师说明这叫做比例的基本性质。
(5)如果把比例写成分数形式,比例的基本性质又是怎样的呢?
指名学生改写2.4:1.6=60:40(=)
这个比例的外项是哪两个数呢?内项呢?
当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积
怎么样?(边问边画出交叉线)
(6)强调:如果把比例写成分数的形式,比例的基本性质就是等号两端分子和分母分别交叉相乘的积相等。以前我们是通过计算它们的比值来判断两个比是不是成比例的。学过比例的基本性质后,也可以应用比例的基本性质来判断两个比能不能组成比例。
(三)、课堂作业设计
1、应用比例的基本性质判断3:4和6:8能不能组成比例。
2、先应用比例的意义,再用比例的基本性质来判断下面哪组中的两个比可以组成比例。
6:9和9:12
0.5:0.2和:
1.4:2和7:10
(四)、拓展练习
下面的四个数可以组成比例吗?把组成的比例写下来。(能写成几组就写几组)
5、8、15和24
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?通过以上学习,大家一定进一步了解比例了吧?
《比例》六年级数学教案14
教学目的:
1、认识反比例关系的意义,理解掌握反比例量的变化规律及其特征,能正确判断或不成反比例关系。
2.掌握判断成不成反比例关系的方法,培养学生判断、推理能力。
教学过程:
一、新课导入:
学具操作:
按要求拿小棒(共24根):12根、8根、6根、4根、3根、1根各可拿几次:并填表
每次取小棒根数12864321
次数234681224
引导学生研究:两组数量关系中两种有关联之间的关系与我们上一课所学内容相同吗?
二、新课展开:
1、出示例4
根据问题讨论:
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)相对应的每两个数的乘积各是多少?
(4)求出积后,你发现什么规律?
回答上述问题并作点评
提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想这个式子表示什么?
2、学习例5
出示P43三个问题让学生研究后回答。
老师作小结。
3、概括反比例的意义。
(1)说明什么是反比例的量,它们之间的关系叫反比例关系。
追问:两种量成不成反比例的关键是什么?
如果用X和Y表示这两种相关联的量,用R表示他们的.乘积,那上面的这种关系怎样写呢?
4、具体认识
(1)例4时有哪两种相关联的量,它们成反比例关系吗?为什么?
(2)例5呢?
(3)P46第4题。
5、学习例6
(1)怎样判断成不成反比例?
(2)学生尝试做例6。
老师评讲:
三、巩固练习
1、判断导入题中的两种理成不成反比例。
2、P44,练一练,第1、2题
3、P46第6、7题
四、课堂小结
这节课我们学习了什么内容:你懂得了什么?
五、课堂作业
六、课后作业
第5题剩下的题目。
《比例》六年级数学教案15
教学目标:
1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
教学重点:
理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。
教学难点:
运用比例尺的有关知识,学会解决生活中的一些实际问题。
教学准备:多媒体课件。
教学过程:
一、展示目标,引入本课。
二、探究新知,意义建构
1、看一看
下面几幅地图的比例尺分别是多少。①中华人民共和国这幅地图的比例尺是多少?(1:6000000)②安庆市这幅地图的比例尺是多少?(1:2500000)③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)
2、说一说
(1)比例尺1:100表示什么意思呢?
生:图上1厘米长的'线段表示实际距离100厘米。
(2)在比例尺1:20xx的地图上,图上距离1厘米,表示实际距离(20xx)厘米。
(3)在比例尺1:40000的地图上,实际距离是图上距离的(40000)倍。
3、议一议
(1)什么是比例尺呢?
图上距离和实际距离的比,叫做比例尺。
(2)比例尺怎样表示呢?
比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)
(3)比例尺有什么特征呢?
①比例尺与一般的尺子不同,它是一个比,不带计量单位;②图上距离和实际距离的单位是统一的;③比例尺的前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。
【意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的,自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的形成过程,才能真正理解。
三、拓展延伸,巩固新知
1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?
70:3.5=700:35=20:1
答:这幅设计图纸的比例尺是20:1。
2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)
3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?
32×6000000=192000000(厘米)192000000厘米=1920(千米)
答:广州到北京实际距离是1920千米。
五、总结新课,整理知识
通过今天的学习,你有什么收获呢?
板书设计:比例尺
比例尺=图上距离:实际距离
实际距离=图上距离×1厘米表示的实际距离
图上距离=实际距离÷1厘米表示的实际距离
【《比例》六年级数学教案】相关文章:
《反比例》数学教案10-05
《解比例》六年级数学教案10-21
数学教案正比例的意义06-08
小学《比例尺》数学教案05-24
六年级数学教案《比和比例一》11-20
六年级数学教案:《按比例分配的练习》04-07
小学《比例尺》数学教案(5篇)05-25
小学数学六年级《比例的应用》教案10-13