六年级上册数学教案

时间:2025-10-25 12:22:56 数学教案 我要投稿

六年级上册数学教案(精选)

  作为一名教职工,时常会需要准备好教案,借助教案可以有效提升自己的教学能力。那么你有了解过教案吗?下面是小编为大家收集的六年级上册数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

六年级上册数学教案(精选)

六年级上册数学教案1

  【教学内容】

  教材第2页例1。

  【教学目标】

  知识与技能:

  在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  过程与方法:

  通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

  情感、态度与价值观:

  引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

  【重点难点】

  重点:理解分数乘整数的意义,掌握分数乘整数的计算方法。

  难点:总结分数乘整数的计算法则。

  【导学过程】

  【情景导入】

  (一)探索分数乘整数的意义

  1、教学例1(课件出示情景图)

  师:仔细观察,从图中能得到哪些数学信息?这里的“ 个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

  师:想一想,你还能找出不一样的方法验证你的计算结果吗?

  2、小组交流,汇报结果

  预设:(1)x(个);(2)x(个);(3)x(个);(4)3个x就是6个x就是x,再约分得到x(个)。(根据学生发言依次板书)

  3、比较分析

  师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的'?预设:

  生1:每个人吃x个,3个人就是3个x相加。

  生2:3个x相加也可以用乘法表示为 。

  提出质疑:3个x相加的和可以用乘法计算吗?为什么?

  预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

  引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

  师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

  引导说出:这两个式子都可以表示“求3个x相加是多少”。

  师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

  4、归纳小结

  通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

六年级上册数学教案2

  分数乘法

  教学目标:

  1.知识目标:

  使学生进一步掌握分数乘法的计算方法,能正确解决分数连乘的简单实际问题,拓展分数乘法意义的理解。

  2.能力目标:

  使学生经历解决问题的探索过程,进一步培养观察、比较、分析的能力。

  3.情感目标:

  感受数学知识和方法的应用价值。

  教学重点:

  能正确计算分数连乘的计算。

  教学难点:

  能用分数连乘的'方法解决实际问题。

  教学准备:

  教学光盘。

  第五课时

  教学过程:

  一、复习引入

  1.下面每个条件分别是以谁为单位“1”的。

  23

  a是b的3b是c的5

  口答,说说可以列成什么数量关系?

  2.今天我们继续学习有关分数乘法新的内容。

  板书课题:分数连乘。

  二、教学新课

  1.教学例6。

  (1)理解题意。

  83

  这里的9和4分别是哪两个量比较的结果?比较时分别把哪个数量看作单位“1”的?三班做的朵数和谁有关?

  二班做的朵数和谁有关?

  (2)画图分析。

  画一条线段表示一班所做绸花的朵数。

  可以怎样表示二班做的绸花朵数?

  怎样表示三班做的绸花朵数呢?

  (3)讨论方法。

  要去三班做了多少朵,要先算什么呢?怎样算?

  讨论交流,汇报方法。

  2.完成练一练。

  独立完成计算,展示作业。

  说说计算时要注意什么?

  三、巩固练习

  1.完成练习九第6题。

  独立完成,集体核对。

  2.完成第7题。

  要求四年级去了多少人,先要算什么?为什么要先算五年级去了多少人?怎样算?说说每一步求的是什么?

  3.完成第8、9题。

  理解题意,弄清解决每一个问题时要先算什么,再算什么?

  列式解答。

  四、课堂小结

  今天学习了什么内容?你对自己的表现满意吗?

六年级上册数学教案3

  一、教学内容:

  苏教版六年级上册68-77页

  二、教材分析:

  《认识比》是苏教版六年级上册中第五单元内容,是本册教材的教学重点之一。教材密切联系学生已学有的学习经验和生活经验过,设置了多种情境图。通过对这部分内容的教学,不仅能够发展对除法与分数的认识,进一步沟通知识间的联系,还能够加深学生对比的性质、比的应用理解。

  三、学情分析:

  学生已经掌握了除法和分数的意义,在此基础上教学一些关于比的基础知识,能够发展学生对除法和分数的认识,进一步沟通知识间的内在联系,完善认知结构,为以后进一步学习比例及其它方面的知识打好基础。

  四、教学目标:

  1.知识技能:使学生在具体的情境中理解比的意义,掌握比的读法、写法,知道比的各部分名称,要会求比值。

  2.过程与方法:使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的.形式。

  3.情感态度与价值观:使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

  五、教学重点:

  理解比的意义;理解比与分数、除法的关系。

  六、教学难点:

  理解比与分数、除法的关系,在生活中发现比,感受比。

  七、教具准备:

  多媒体课件、学生自备三角板一副

  八、教学过程:

  1.创设情境,引入比

  课件出示例1问:图上有什么?(2杯果汁,三杯牛奶)想一想:可以怎样表示这两个数量之间的关系?根据学生回答课件呈现:牛奶比果汁多一杯;果汁比牛奶少一杯果汁的杯数是牛奶的;牛奶的杯数是果汁的板书:2÷3=

  3÷2=

  小结:两个数量相比较,既可以用减法来比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。其实,在比较两个数量之间的关系时,还可以用比来表示。这就是我们今天一起学习的新内容——认识比(板书)

  2.自主探究,认识比

  (1)用比表示两个同类量之间的相除关系

  (2)用比表示两个不同类量之间的相除关系

  (3)揭示比的意义。观察屏幕上的几个比,想一想两个数的比可以表示什么?想好以后和你的同桌讨论一下。(小组交流、全班交流)

  小结:分数就是除法,比与除法有关系,两个数的比表示两个数相除,比的前项除以比的后项得到的商就是比值。问:比的后项能为0吗?

  不能

  (4)课件出示

  3.自主练习,应用比

  学生独立完成课本P70“练一练”1、2、3

  4.拓展延伸,感受比

  你听说过“黄金比”吗?黄金比的比值约等于0,618。从古希腊以来,一直有人认为把黄金比应用于造塑艺术,可以使作品给人以最美的感觉。因此,黄金比在日常生活中有着广泛的应用。能找找看吗?

  5.课堂小结:两个数的比表示两个数相除,比的前项除以比的后项得到的商就是比值。

六年级上册数学教案4

  一、教学内容

  1、分数乘法的意义

  2、分数乘法的计算

  3、利用分数乘法解决相关实际问题。

  二、教学目标

  1、使学生理解分数乘法的意义是整数乘法意义的扩展;理解和掌握分数乘法的计算方法,会计算分数乘整数、分数、小数;能运用乘法运算定律进行一些简便计算。

  2、使学生经历分数乘法计算方法的探索过程,经历应用分数乘法解决简单实际问题的过程,进一步培养分析、比较、抽象、概括、归纳、类推的能力,发展初步的合情推理和演绎推理的能力。

  3、使学生感受知识之间的内在联系,提高自主探索与合作交流学习的能力,建立学好数学的信心。

  三、主要变化与具体编排

  (一)主要变化

  1、进一步厘清分数乘法的意义。

  分数乘法的意义是整数乘法意义的扩展,二者在本质上完全一致,只是在表述方式上有所区别。例如,如果脱离情境,在抽象的层面上讨论“5×3”,它既可以表示5个3相加,用“倍”的语言来描述就是“3的5倍”;也可以表示3个5相加,同样可以说成“5的3倍”。类似地,如果以这样的方式来讨论“3×”,它既可以表示3个相加,即“的3倍”;也可以表示“3的”。从表面上看,“一个数的几分之几”是一种全新的表述,但实际上,它只是省略了“3的倍”中的“倍”字,把“一个数的几倍”扩展到“一个数的几分之几”。从另一个角度看,“3的”和“个3”表示的意思完全相同,例如,一根绳子长3 m,“它的长多少米”和“根绳子长多少米”说的是一个意思。因此,不管是整数乘法还是分数乘法,其意义都可以归结为“几个几”,只不过,这里的两个“几”都既可以是整数,也可以是分数。

  根据这样的思路,教材编排了三道例题来教学分数乘法的意义和计算。例1,让学生计算3个m是多少,学生可以直接利用整数乘法的意义,转化成连加进行计算。例2,是例3的铺垫,让学生根据整数乘法中的数量关系“单位量×数量=总量”列出“1桶水12L,桶是多少升”的算式是12×,然后结合直观图和分数的意义,发现12×在这儿表示的就是12L的,进而得出“一个数乘几分之几可以表示求这个数的几分之几是多少”的结论。在这一过程中,把“桶水”变成“1桶水的”,实现了从“量”到“率”的有效转换。有了例2的基础,例3中求“公顷的”,算式列成×就“有据可依”了。

  这样编排,有几个好处。一是在单元之始就把分数乘法意义的两种不同表述方式都呈现出来,使学生对分数乘法的意义有比较全面、完整的认识。二是编排逻辑更加清晰,先让学生理解分数乘法的意义,解决“如何列式”,再解决“如何计算”。三是突破了过去教材中到“问题解决”部分才去解决“求一个数的几分之几是多少”的限制,大大拓宽了本单元其他内容的素材选择范围。例如,既可以出现“蜂鸟的飞行速度是千米/分,分钟飞行多少千米”的题材(分数是一种具体量,带单位),也可以出现“一头鲸长28 m,一个人身高是鲸体长的。这个人身高是多少米”的练习题(分数是一种“率”,不带单位)。

  2、增加分、小数相乘的内容。

  学生在未来的学习中会遇到许多分、小数相乘的情况,例如,解决“按1:5的比配制一杯1.2 L的稀释液,需要多少升浓缩液”的问题时,需要计算形如1.2×的算式。如果学生不会直接约分,计算的繁琐程度和出错概率就会大大增加。因此,教材新编了例5,让学生分别计算2.1×和2.4×,让学生根据数据的特点灵活选择计算方法,能直接约分的尽量直接约分。教学时,要使学生通过2.4×=24×0.1×=×0.1×=0.6×的推导过程理解“为什么能直接约分”的原理。

  3、调整了用分数乘法解决实际问题的类型。

  如前所述,学生已经在“分数乘法的意义和计算”中解决了“求一个数的几分之几是多少”的基本问题。这一基本数量关系的掌握对于解决更复杂的分数乘法问题至关重要。

  此次修订增加了“连续求一个数的几分之几是多少”的问题。这一类问题是“求一个数的几分之几是多少”的延续,已知量和所求的量之间的关系没有直接给出,而是通过一个“中间量”搭建起二者之间的“桥梁”。在解决这一类问题时,需要学生把复杂的问题化归为基本的“求一个数的'几分之几是多少”,并抓住这一基本数量关系中的几个关键要素:单位“1”是谁?所求的量是谁?二者之间是几分之几的关系?尤其要注意单位“1”与几分之几之间的对应关系。

  对于“求比一个数多(或少)几分之几的数是多少”这类问题,与实验教材相比,修订后的教材减轻了例题的份量,在例题中只出现不同量的情况(婴儿每分钟心跳的次数比青少年多),对于同一量的情况(嗓音降低),则放在“做一做”中让学生巩固掌握。

  4、把“倒数”的内容移至“分数除法”单元。

  倒数是联结分数乘法和分数除法的纽带。在进行分数除法计算时,要用到“除以一个数,等于乘上这个数的倒数”这一结论,因此,把“倒数”安排在“分数除法”单元,更能体现出学习倒数的必要性。

  (二)具体编排

  1、例1。

  直接利用整数乘法的意义来引入分数乘法,使学生理解几个相同分数相加和几个相同整数相加都可以用乘法计算。并通过将分数乘法转化为分数加法来探究分数乘法的算理,掌握计算方法。

  从吃蛋糕的实际问题引入,借助圆形直观图帮助学生理解题意,探究计算方法。这一直观图延续了三年级学习简单的分数加法时所用的直观图,有助于学生利用已学的知识自主探索。此例中的分数带单位,是一个“量”,学生对于求几个相同量之和的数量关系非常熟悉。先呈现加法计算,然后直接根据整数乘法的意义列出两个乘法算式,说明在这种情况下整数乘法的意义同样适用。

  计算时,先将分数乘法转化为几个相同分数相加,使学生明白分母不变、分子相乘的道理。在此基础上总结分数乘整数的计算方法,并指出有时可以先约分再相乘的简便算法。

  2、例2。

  让学生利用已学的整数乘法的数量关系进行类推,列出分数乘法算式,结合具体情境,使学生理解“一个数乘几分之几可以表示求这个数的几分之几”。这是“求一个数的几分之几可以用这个数乘几分之几”的列式依据。

  教材呈现了三幅图,都是已知1桶水的体积,分别要求3桶水、桶水、桶水的体积。在这里,列式所依据的数量关系都是“每桶水的体积×桶数=水的体积”,只是桶数可以由整数扩展到分数。接下来,结合情境,说明求桶水、桶水的体积就是求12L的和12L的分别是多少。在此基础上,概括出“一个数乘几分之几,可以表示这个数的几分之几是多少”。

  3、例3。

  本例是在学生会利用“求一个数的几分之几是多少,用乘法计算”列式之后,学习分数乘分数的计算方法。

  教材利用两个小题,由简单到复杂,结合直观操作,使学生在探索和理解分数乘分数算理的基础上,一步一步总结出分数乘分数的计算方法,渗透数形结合的数学思想,培养学生的逻辑推理能力。

  要理解分数乘分数的算理,其根本在于分数意义的理解。在这里,有些分数是带单位的“量”,有些分数是不带单位的“率”,事实上,“量”与“率”也是可以互相转化的。例如,公顷,实际上就是1公顷的;公顷的,就是1公顷的,即公顷。

  4、例4。

  本例是学习分数乘法的简便方法。学生在前面对于分数乘法的意义和算理有了深刻的理解后,教学重点转入寻求便捷的算法。

  在设计情境时,教材特意把两个小题设计成需要运用分数乘法意义的两种不同形式进行列式的情形,旨在进一步巩固分数乘法的意义。其中,第(1)小题是“求一个数的几分之几”,第(2)小题既可以根据“速度×时间=路程”列式,也可以根据“几个相同分数相加”列式。

  在数据处理上,本例中既包含分数与分数相乘,又包含分数与整数相乘。学生可以通过此例,进一步掌握分数乘法的一般性算法。

  5、例5。

  本例是教学分数与小数相乘的计算问题。分、小数混合运算是在日常生活中以及未来的数学与其他学科的学习中经常会遇到的情形,因此,根据分、小数的数据特点灵活选择计算策略,也是学生应该具备的一项技能。为此,教材在修订时增加了这部分内容。

  分数和小数相乘,可把分数化成小数相乘(如果分数可以化成有限小数),也可把小数化成分数相乘。不管哪种方法,都是学生已学的知识,可以让学生自行解决。而当小数与分数的分母存在某种倍数关系时,可以直接“约分”。这种约分虽然与以前学过的约分形式不同,但实质都是除以一个相同的数。

  6、例6。

  从“做一个长方形画框需要多长的木条”的实际问题引入,利用长方形画框的周长计算引出分数混合运算。鼓励学生用不同的方法(除了教材上的两种方法,还有可能用四条边相加的)计算,很自然地呈现各种形式的算式,有两级运算的,有带小括号的。教材直接说明分数混合运算的顺序和整数混合运算顺序相同,让学生自主解决。

  教材特意用两道有关联的算式教学分数混合运算的顺序,为接下来正式教学把整数乘法运算定律推广到分数乘法作了很好的铺垫。在此基础上,再通过观察、计算,归纳得出“整数乘法的交换律、结合律和分配律,对于分数乘法也适用”的结论。

  7、例7。

  教材结合具体计算,说明应用乘法运算定律可以使分数混合运算更加简便。

  8、例8。

  本例是让学生在会解决求一个数的几分之几是多少的基础上,解决连续求一个数的几分之几是多少的实际问题。在这里,由于研究的是三个量之间的关系,在描述其中某两个量的数量关系时,单位“1”是在动态变化的。

  教材按“阅读与理解”“分析与解答”和“回顾与反思”呈现解决问题的一般步骤。到了高年级,随着问题复杂度提高,对于信息的搜集、题意的理解以及整个问题解答过程以及结果合理性的回顾与讨论,显得越来越重要。

  在“分析与解答”环节,一方面,通过折纸或画图等操作活动,借助直观图形帮助学生理解题中的数量关系,体会画图是分析问题、解决问题的重要策略。另一方面,倡导解决问题方法的多样化。既可以先求出萝卜地的面积,再求出红萝卜地的面积;也可以先求出红萝卜地占大棚面积的几分之几,再求出红萝卜地的面积。不同解题思路的呈现,可以提高学生思维的灵活性和发散性。

  “回顾与反思”让学生自己完成。检验的角度很多,比如,看看直观图画得是否符合题意,看看列式是否符合图意,看看计算是否正确。检验的方法也是多样化的。例如,可以看到萝卜地的面积是红萝卜地的4倍,而大棚面积是萝卜地的2倍。用红萝卜地的60m2乘4,得到萝卜地是240 m2,再乘2,是480m2,与题中的信息相符。也可以看看红萝卜地的面积是否占整块萝卜地的。

  9、例9。

  本例是让学生解决求比一个数多(或少)几分之几的数是多少的问题。虽然还是研究两个量间的关系,但由于没有直接给出“一个量是另一个量的几分之几”,需要先求出一个量比另一个量多(或少)的具体数量或者先求出一个量是另一个量的几分之几。

  教材通过线段图直观地表示出“婴儿每分钟心跳的次数比青少年多”的意思,对于学生理解题意、选择解决方法起到了关键性的作用。

  教材体现了多样化的解题策略。可以先计算婴儿每分钟心跳比青少年多多少次,这就需要先解决“75次的是多少次”的问题。还可以先求出婴儿每分钟心跳次数是青少年的几分之几,这就需要先解决“比一个数多的数是这个数的几分之几”的问题。

  “回顾与反思”部分,使学生通过回顾解题的过程,充分认识到画线段图这一策略对于解决问题的重要作用。同时,列举了一种检验结果的方法,引导学生用不同的方法加以检验。

  四、教学建议

  1、在已有知识的基础上,帮助学生自主构建新知识。

  2、通过操作和直观图示帮助学生理解分数乘法的算理,掌握计算方法。

  3、紧密联系分数乘法的意义,引导学生在理解数量关系的基础上正确列式,解决实际问题。

六年级上册数学教案5

  教学目标:

  1、引导学生在已学会的一些基本的百分数实际问题的基础上,引出列方程解一些稍复杂的百分数实际问题的方法。

  2、能根据题中的信息,熟练地找出基本的数量关系,培养学生的分析解题能力。

  教学重点:

  分析数量关系。

  教学难点:

  找等量关系。

  课前准备:

  课件

  教学过程:

  一、铺垫练习

  (一)解方程:

  χ+40%χ=7 χ-15%χ=10.2 140%χ-χ=0.5

  (二)列出方程解应用题。

  (1)阳光机械厂有职工130人,男工人数是女工人数的 。阳光机械厂男、女职工各多少人?

  (2)阳光机械厂中男工人数比女工人数少26人,男工人数是女工人数的3/5。阳光机械厂男、女职工各多少人?

  二、探究新知

  1、教学例10,出示例10。

  (1)读题,理解题意

  问:60%是哪两个数量比较的`结果?比较时,要把哪个数量看作单位“1”?你能想出怎样的数量关系式?

  (2)让学生根据上面的分析画线段图

  (3)学生列方程解答

  (4)交流解答过程及结果

  (5)让学生尝试检验 ;

  (6)小结:这样的题目告诉我们什么?求的是什么?我们可以怎么思考?

  2、教学“练一练”。

  (1)第1题,先把数量关系填写完整,再列方程解答。

  (2)第2题,学生独立尝试解答,完成后交流讨论:

  1、是怎样想到列方程解的?

  2、列方程时,依据了怎样的等量关系?

  三、课堂总结

  今天学的百分数应用题有什么特点?解决这类题目怎样思考?

  四、课堂作业

  练习十七第1-3题

六年级上册数学教案6

  教学内容:课本第6页的内容和练习二的第5—11题。

  教学目的:

  1、进一步掌握分数乘分数的计算法则,并能比较熟练地进行计算。

  2、培养学生的计算能力。

  教学过程:

  一、复习。

  1、计算下面各题,并说一说计算方法。

  2、把下面的整数改写成分数。

  2=()5=()14=()25=()

  二、新授。

  1、统一计算法则。

  (1)到目前为止,你学会了哪些分数乘法的知识?分数乘整数以及分数乘以分数的计算法则分别是什么?分数乘分数的法则适用于分数和整数相乘吗?为什么?

  (2)请你试算一算:

  (学生小组合作学习,教师巡视。)

  学生边展示计算过程,边阐述理由。

  (3)教师引导学生归纳:因为整数可以看成分母是1的分数,所以分数乘分数的法则也适用于分数和整数相乘。因此分数乘法的计算法则可以统一为一条,即用分子相乘的积作分子,分母相乘作分母。

  2、书写形式。

  (1)具体计算时,在碰到整数和分数相乘,可以把整数看成分母是1的分数,直接和分数的分子相乘,不必把整数化成分母是1的.分数。

  例如:

  (2)计算时,也可以不把相乘的两个数改写成分子、分母分别相乘的形式,直接把整数或分数的分子与另一个数的分母进行约分。

  例如:

  3、做一做。

  完成课本第6页下面的做一做题目。

  三、巩固练习。

  1、练习二的第6题。

  2、练习二的第8题。

  3、练习二的第10题。

  四、总结。

  这节课你有什么收获?

  五、课堂练习。

  练习二的第5、7、9、11题。

六年级上册数学教案7

  【教学内容】

  教材42——43页例7及练习九的5—9题

  【教学目标】

  知识与技能:使学生理解“工程问题”的特点、数量关系;掌握解题方法,并能正确解答。

  过程与方法:培养学生观察、类推能力,初步的探究知识、合作解决问题的能力。

  情感、态度与价值观:结合生活实际,让学生感受到数学的使用价值

  【教学重难点】

  重点:工程问题数量关系特征及解题方法。

  难点:工作总量用单位“1”表示及工作效率所表示的含义。

  一、复习

  师:同学们,我们回忆一下,以前学过的做工问题涉及到哪三种量三种量?

  生:工作总量、工作效率、工作时间。 师:那它们的关系又如何呢?

  二、导入新课,揭示课题。 师:如果不给出具体的工作总量,该怎么解决呢?这就是我们今天要学习的工程问题。(师板书:工程问题)

  【导学过程】

  1、 出示例7。

  2、一项工程,由甲工程队单独需12天完成,由乙工程队单独做需18天完成,两队合做需多少天完成?师:那怎样理解什么是独做?什么是合做?我们先来演示一下,我们就以同学的课桌的长度为一项工程,以笔的运作为工作效率,同桌分别扮演甲乙工程队,独做就是一个同学从左运作到右,另一个同学从右运作到左。合做就是两个同学相向运作,直到相遇表示这项工程完成了。同学们看看,完成一项工程是独做的快还是合做的快?

  3、师:同学们再动动脑筋,看哪个小组又对又快地讨论出下面的`问题?(播放轻松的音乐,学生在音乐声中讨论。教师巡视,对个别组辅导)

  学生以四人小组为单位进行讨论。(课件出示)

  1)题目里没有具体的工作总量,可用什么来表示工作总量?

  2)甲队每天完成工程的几分之分?

  3)乙队每天完成工程的几分之几?

  4)两队合做,每天完成工程的几分之几? 5)两队合做,需几天完成?

  4、准备题:

  修一段600米长的公路,甲工程队单独做20天完成,由乙工程队单独做30天完成,两队合作多少天完成?

  师:谁能说说工程问题的特点是什么?

  生:工作总量可用单位“1”来表示,工作效率用单位“1”的几分之一来表示。

  【随堂练习】

  完成下面两题,要求先写出数量关系然后再解答。

  1、一批零件,王师傅单独做要15小时完成,李师傅单独做要20小时完成,两人合做,几小时能加工完这批零件的?

  2、一项工作,甲单独做要10天完成,乙单独做要15天完成。甲、乙合做几天可以完成这项工作的80%?(浙江温岭市)

  3、一项工程,甲独做要12天完成,乙独做要18天完成,二人合做多少天可以完成这件工程的2/3?

  4、一项工程,甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完?

  5、 修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天?

  练习九的6—9题。(请先画线段图分析题意,然后再解答。)

六年级上册数学教案8

  教学目标:

  1、借助具体事例,初步学会设计简单的调查表,认识复式条形统计图,会用简单复式统计图来描述数据。

  2、经历数学的收集、整理、表达、描述和分析的全过程,体验复式统计图在比较、描述数据中的作用,了解统计图画法不同对数据描述和解释的影响。

  3、在统计的过程中,初步形成统计意识,发展统计观念。

  4、感受统计在现实生活中的作用,增强学习统计知识的自觉性和主动性。

  5、通过参与“保护眼睛”的统计活动,增强保护眼睛的意识,养成良好的用眼习惯。

  教学重点:

  经历数学的收集、整理、表达、描述和分析的全过程,体验复式统计图在比较、描述数据中的作用,了解统计图画法不同对数据描述和解释的影响。

  教学难点:

  经历数学的收集、整理、表达、描述和分析的全过程,体验复式统计图在比较、描述数据中的作用。

  教学方法:

  自主探究、合作交流教具多媒体课件。

  教学过程:

  一、解读情境,提出问题

  谈话:同学们,目前我国中小学生近视患病率快速上升,这是家长和社会非常关注的问题。请看来自《中国青少年研究中心》的研究报告(多媒体出示118页情境图)。读一读,从这份报告中你都知道了什么,能提出什么问题?(引导学生提出“我们这些中小学生患近视的年龄是不是提前了呢?”)

  二、合作探究,解决问题

  (一)调查搜集数据,学习调查表。

  1、独立思考。

  谈话:怎样才能知道中小学生患近视的年龄是不是提前了呢?(引导学生明白要知道是不是提前了就要进行比较)要比较就需要调查大量的数据,为了记录数据我们就要制作调查表,想一想,怎样设计调查表?

  2、班内交流。

  谈话:你打算怎样设计调查表?(引导学生明确调查的对象和调查的内容)(出示调查表)这样制作可以吗?为了便于我们今天的研究我提前对45名学生和家长进行了调查。请看屏幕(补充数据)。

  (二)整理数据,学习复式条形统计图。

  1、尝试比较,提出问题。

  谈话:比一比两张调查表,看看学生患近视的年龄是不是提前了?(引导学生体会看原始的调查表数据太乱,不便于比较)

  谈话:原始的调查表太乱,怎么样整理这些数据才能便于比较呢?先自己想想,再与同位说说。

  谈话:你打算怎样整理数据?(统计表,统计图)

  [设计意图:组织学生尝试比较,目的是引导学生在比较的过程中,体会调查表中饿数据太乱,不便于直接比较,从而感受整理数据的必要性。]

  2、独立思考,探索方法。

  谈话:老师这里有一个统计表,咱们一起来整理整理好吗?(师生共同整理填写统计表)根据这个表格中的数据比一比,中小学生患近视的年龄是不是提前了呢?(引导学生根据统计表中的数据比较、分析,作出判断)

  谈话:刚才我们是用统计表进行整理的,用统计图怎样整理更便于我们比较观察呢?先自己想一想,有了方法开始整理,整理完了和你的同位交流交流。

  3、班内交流,学习方法。

  谈话:中小学生患近视的.年龄是不是提前了?你是怎样整理的?(学生可能出现单式和复式两种不同的整理方法,应着重引导学生在交流比较的过程中,认识到复式条形统计图的特点)

  4、比较解释,优化方法。

  谈话:刚才大家用两种方法进行了整理,想一想,要解决这个问题用哪种更便于比较?为什么?

  5、查漏补缺,完善方法。(根据学生制图的情况,补充完整,完善方法。)

  [设计意图:让学生独立思考,探索方法,合作交流,学习方法,比较评价,优化方法。有利于学生经历整理数据、描述数据和分析数据、作出决策的过程,自主地学习复式条形统计图的作用和制作方法。]

  三、自主练习,应用拓展

  1、课本自主练习第3题,巩固看图的方法,提高学生分析数据的能力。

  谈话:同学们喜欢运动会吗?知道小学生运动会有哪些项目吗?(引导学生了解小学生运动会一般有:短跑、跳高、跳远、铅球和中长跑等项目)如果老师要知道5.1班和5.2班,在比赛中哪些项目占优势,我应该选择什么样的统计图?为什么?

  (1)独立解答。(出示题目引导学生独立解答)

  (2)班内交流。

  2、课本第129页,“我学会了吗”的第1题。

  [设计意图:充分利用课本上练习题组织统计活动,目的是让学生再一次经历统计的全过程,在实践中巩固调查表及复式条形统计图的制作方法,提高统计能力,发展统计观念。]

  四、总结全课,系统整理

  今天我们学习了什么?设计调查表和绘制复式条形统计图应该注意什么?

  教学反思:

  整节课下来,感觉思路还是比较清晰的,但似乎没有足够的实例让学生体会统计与生活的密切练习,应该在练习中再加入一些统计在生活中体现的例子,让学生体会统计与生活的联系,开拓学生思路与思维,使学生更好的感受统计的作用以及数学与生活的密切联系。

六年级上册数学教案9

  第12课时 练习课

  教学内容:

  课本第101页练习十六第11-17题。

  教学目标:

  1、使学生进一步理解税率、利率、折扣的含义,知道它们内在实际生活中的应用,能解决相关的实际问题。

  2、进一步体会数学知识间的内在联系,感受数学知识和方法的应用价值,获得一些成功的'体验,增强学好数学的信心。

  教学重点:

  理解税率、利率、折扣的含义。

  教学难点:

  百分数解决实际问题的数量之间的关系。

  课前准备:

  小黑板

  教学过程:

  一、基本训练

  1、找出下列各题中的单位“1”,并说出下列句子的含义。

  (1)一件上衣打八折售出。

  (2)今年的营业额比去年增加20%。

  (3)定期三年的存款年利率是5.00%。

  2、计算。

  40%X=144 X-25%X=3 X+20%X=180

  二、比较练习

  (1)一台电视机原价1800元,打九五折销售,现价多少元?

  (2)一台电视机打九五折后的售价是1710元,原价多少元?

  学生独立练习,完成后讨论比较两道题的相同点和不同点。

  三、巩固练习

  1、做练习十六第12题。

  读题,引导提问:“一共可取回多少元”是什么意思,首先必须求出什么?

  学生独立解答。

  2、做练习十六第13题。

  (1)引导学生弄清题中两个分数的不同含义。

  (2)找出题中数量之间的相等关系

  (3)独立解答,完成后交流解法。

  3、独立完成第14、16题。

  学生独立练习后由学生进行交流评讲。

  四、课堂总结

  通过这节课的学习,你有什么收获呢?

  五、布置作业

  练习十六第11、15、17题。

  六、指导阅读“你知道吗”知识。

  教学反思:

六年级上册数学教案10

  【教学内容】

  圆的面积

  【教学目标】

  知识与技能:

  1、能正确运用圆的面积公式计算圆的面积。

  2、能运用圆的知识解决一些简单的实际问题。

  过程与方法:借助割补的方法,让学生回忆旧知,应用类比迁移和小组讨论归纳等活动培养学生创造能力、解决问题的能力、科学探究能力。

  情感、态度与价值观:在学生实践操作和分析过程中,体会以直代曲的转化思想,使学生进一步体会转化方法价值,促使学生实现认知上的飞跃。

  【教学重难点】

  重点:能正确运用圆的面积公式计算圆的面积。

  难点:能运用圆的知识解决一些简单的实际问题。

  【导学过程】

  【知识回顾】

  圆的面积公式是什么?你是怎么得到的?

  【新知探究】

  【一、自主预习】

  1、已知r=2厘米,怎样求C?

  2、判断:

  (1)长方形的面积=(长+宽)×2 ( )

  (2)长方形的面积=长×宽 ( )

  (3)50的平方=50×2 ( )

  (4)50的平方=50×50 ( )

  (5)面积单位比长度单位大 ( )

  3、你所学过的平面图形的面积是怎样求的?

  4、自学教材第67-69页,提出自己不懂的问题。

  5、把127页上的圆剪下来,按书上的方法,转化成一个长方形,说说你有些什么发现?

  【二、合作探究】

  圆的面积怎么求?

  1、观察老师的演示,(把圆剪、分、拼)思考:

  ①拼组的是( )形。

  ②拼组的图形面积与圆的面积有什么关系?

  ③拼组后图形各部分相当于圆的什么?

  因为:拼组后的图形的面积=( )×( )

  所以:圆的面积=( )×( )

  2、圆的面积公式的应用。

  ①学习例1,说说解题方法,完成做一做例1。

  ②学习例2,说说怎样利用内圆和外圆的面积求出环形的面积?

  【三、拓展归纳】

  1、一个圆可以转化成一个近似的长方形,这个长方形的长相当于圆的周长的一半,即C÷2=2πr÷2=πr,长方形的宽就是圆的半径r。

  2、要求圆的面积,必须知道( )。

  【知识梳理】

  本节课你学习了哪些知识?

  【随堂练习】

  1.一个圆形桌面的直径是 2米,它的面积是( )平方米。

  2.已知圆的周长c,求d=( ),求r=( )。

  3.圆的半径扩大2倍,直径就扩大( )倍,周长就扩大( )倍,面积就扩大( )倍。

  4.环形面积S=( )。

  5.用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是( )厘米,画出的这个圆的面积是( )平方厘米。

  6.大圆半径是小圆半径的4倍,大圆周长是小圆周长的( )倍,小圆面积是大圆面积的( )。

  7.圆的半径增加1/4圆的'周长增加( ),圆的面积增加( )。

  8.一个半圆的周长是20.56分米,这个半圆的面积是(   )平方分米。

  9.将一个圆平均分成1000个完全相同的小扇形,割拼成近似的长方形的周长比原来圆周长

  长10厘米,这个长方形的面积是( )平方厘米。

  10.在一个面积是16平方厘米的正方形内画一个最大的圆,这个圆的面积是( )平方厘米;

  再在这个圆内画一个最大的正方形,正方形的面积是( )平方厘米。

  11.大圆半径是小圆半径的3倍,大圆面积是84.78平方厘米,则小圆面积为( )平方厘米。

  12.大圆半径是小圆半径的2倍,大圆面积比小圆面积多12平方厘米,小圆面积是( )平方厘米

六年级上册数学教案11

  【教学内容】

  教材50、51页及练习十一的4-8题

  【教学目标】

  知识与技能:

  1.理解比的基本性质.

  2.正确应用比的基本性质化简比.

  过程与方法:

  培养抽象概括能力;

  情感、态度与价值观;

  渗透转化的数学思想。

  【教学重难点】

  重点:理解比的基本性质,正确的化简比。

  难点:正确应用比的基本性质化简比。

  【导学过程】

  ⊙复习铺垫

  1.什么叫两个数的比?(两个数的比表示两个数相除)

  2.比与分数、除法有什么关系?(引导学生明确:比相当于分数、相当于除法;比的前项相当于……可以结合算式或表格回答)

  3.商不变的性质和分数的基本性质各是什么?[商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变]

  设计意图:回顾比的意义和商不变的性质以及分数的基本性质,理清比与分数、除法的关系,为探究比的基本性质做好铺垫。

  ⊙探究新知

  1.导入新课。

  (1)课件出示:

  (2)这三个分数的大小相等吗?为什么?(相等,因为它们的分数值都是0.75)

  (3)还有其他方法可以证明它们的大小相等吗?怎样证明?(有,根据分数的基本性质,和都可以化成,所以它们的大小相等;根据分数和除法的关系以及商不变的性质也可以证明这三个分数的大小相等)

  (4)在除法中有商不变的性质,在分数中有分数的基本性质,那么在比中是否也有类似的性质呢?这节课我们就来探究一下比的基本性质。(板书课题)

  2.探究比的基本性质。

  (1)把改写成比的形式。(引导学生汇报并用课件展示:=3∶4;=6∶8;=12∶16)

  (2)探讨这三个比之间的关系,用算式表示出来,并说明理由。(3∶4=6∶8=12∶16,比值都是0.75)

  (3)观察、比较、发现。

  观察每个比的前项和后项的变化过程及规律。(结合学生的汇报,用课件展示相关内容)

  6÷8=(6×2)÷(8×2)=12÷16

  ↓ ↓ ↓

  规律:比的前项和后项同时乘相同的数,比值不变。

  6∶8=(6÷2)∶(8÷2)=3∶ 4

  ↓ ↓ ↓

  6÷8=(6÷2)÷(8÷2)=3 ÷ 4

  规律:比的前项和后项同时除以相同的数,比值不变。

  (4)归纳总结。

  ①试用一句话概括上面三个比的变化规律。(比的前项和后项同时乘或除以相同的数,比值不变)

  ②讨论:同时乘或除以的相同的数可以是0吗?为什么?(不可以是0,因为除以0没有意义)

  ③归纳总结比的基本性质。

  比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  设计意图:先提出问题,调动学生思考问题的积极性,再由提出的问题,引发横向思维,建立各知识点间的联系,最后通过观察、比较、思考、发现,逐渐完善比的基本性质,帮助学生养成比较完善的思维习惯。

  3.应用比的基本性质。

  (1)探究整数比的化简方法。

  ①PPT课件出示教材50页例1(1)小题:“神舟”五号搭载了两面联合国旗,一面长15 cm,宽10 cm,另一面长180 cm,宽120 cm,这两面联合国旗长和宽的最简单的整数比分别是多少?

  ②明确什么是最简单的整数比。[前项和后项是互质数(只有公因数1)的比叫最简单的整数比]

  ③探究15∶10和180∶120的化简方法。

  除以前项和后项的最大公因数:

  15∶10=(15÷5)∶(10÷5)=3∶2

  180∶120=(180÷60)∶(120÷60)=3∶2

  小结:化简整数比,可以把比的前项和后项同时除以它们的最大公因数。(板书:整数比的化简)

  (2)探究分数比和小数比的化简方法。

  ①PPT课件出示教材51页例1(2)小题:把下面各比化成最简单的整数比。

  0.75∶2

  ②探究分数比的化简方法。(引导学生说出:要根据比的基本性质,把它的前项和后项同时乘它们分母的最小公倍数18,才能化成最简单的整数比)

  A.用乘最小公倍数的方法

  B.用求比值的方法=3∶4=3∶4

  ③探究小数比的化简方法。(引导学生说出:要根据比的`基本性质,把它的前项和后项同时乘相同的数,使它们转化成整数比。如果这时还不是最简单的整数比,要再除以前项和后项的最大公因数,化成最简单的整数比)

  先化成整数比,再化简。

  0.75∶2=(0.75×100)∶(2×100)=75∶200=(75÷25)∶(200÷25)=3∶8

  小结:用求比值的方法化简分数比时,要注意化简比与求比值的不同,无论是分数比的化简还是小数比的化简,化简比的结果仍要写成比的形式,而不能写成小数或整数的形式。(板书:分数比的化简,小数比的化简)

  (3)总结。

  化简比的依据是比的基本性质,化简比的方法不是唯一的,要注意的是,化简后仍是比的形式。

  设计意图:在弄清比的基本性质的基础上,引导学生探索各类比的化简方法,结合实例,总结出各类比的化简方法,培养学生的概括能力。

  ⊙巩固练习

  1.判断。

  (1)比的前项和后项同时乘或除以相同的数,比值不变。(  )

  (2)4∶0.25化简后的结果是16。(  )

  (3)从学校走到图书馆,小明用了8分钟,小红用了10分钟,小明和小红的速度比是4∶5。(  )

  2.填空。

  16∶200=(  )∶(  )=(  )∶(  )=

  (  )∶(  )=(  )∶(  )=(  )∶(  )。

  (独立尝试后交流,汇报时说明理由,第2题答案不唯一,只要和16∶200的比值相等就是正确的)

  3.完成教材51页“做一做”。

  ⊙课堂总结

  本节课你有什么收获?

  ⊙布置作业

  教材53页4、5题。

  板书设计

  比的基本性质

  比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

六年级上册数学教案12

  第六单元百分数

  第15课时练习课

  教学内容:

  课本第105--106页练习十七第9-15题。

  教学目标:

  1、通过练习,使学生能比较熟练地掌握列方程解稍复杂的百分数问题,提高解题能力。

  2、通过练习,沟通百分数和分数的联系,提高学生解决相关问题的能力。

  教学重点:

  分析应用题的数量关系。

  教学难点:

  找准应用题的等量关系。

  课前准备:

  小黑板

  教学过程:

  一、基本训练

  找出下列各题中的单位“1”,并说出下列句子的含义。

  男生人数占女生人数60%。

  男生人数比女生人数多20%。

  女生人数比男生人数少25%。

  加工一批零件,已完成了80%。

  树苗的.成活率是95%。

  今年的猪肉单价比去年上涨了80%。

  二、比较练习

  第一组;

  (1)一桶油共35千克,用去的是剩下的25%,用去和剩下各是多少千克?

  (2)一桶油用去的比剩下的少21千克,用去的是剩下的25%,用去和剩下各是多少千克?

  (3)一桶油剩下的是28千克,用去的是剩下的25%,用去的是多少千克?

  (4)一桶油用去了7千克,用去的是剩下的25%,用去的是多少千克?

  学生独立练习后将这四题逐一比较(比较它们的相同点和不同点)

  第二组;

  (1)修一条公路,第一天修了30%,第二天修了40米,两天正好修了全长的一半,这条路全长多少米?

  (2)一根钢管长30米,第一次接去全长的,第二次截去米,还剩多少米?

  学生独立练习后将这两题进行比较(比较它们的相同点和不同点)

  三、巩固练习

  1、做练习十七第10题。

  (1)读题,理解含有分数的条件,说出等量关系。

  (2)根据等量关系列方程解答。

  2、做练习十七第14题。

  (1)引导学生弄清题中两个分数的不同含义。

  (2)找出题中数量之间的相等关系。

  (3)列方程解答。

  3、独立完成练习十七第11、12、13题。

  学生独立练习后由学生进行交流评讲。

  四、课堂总结

  让学生说说这节所学的知识。

  列方程解稍复杂的百分数实际问题时怎样思考?

  五、布置作业

  练习十七第9、15题。

六年级上册数学教案13

  教学目标:

  1、学生能够尝试用假设法解决连续求“一个数比另一个数多(或少)百分之几”的问题

  2、掌握用抽象“1”解决实际问题的方法。

  教学重点:

  用假设法解决连续求“一个数比另一个数多(或少)百分之几”的问题

  教学难点:用抽象“1”解决实际问题的方法。

  一、创设情境,复习导入

  口答算式。

  (1)100的5%是多少?

  (2)50吨的'10%是多少?

  (3)1000元的8%是多少?

  (4)50万元的20%是多少?

  二、探索交流,解决问题

  1、出示例5

  2、分析问题

  (1)已知什么?求什么?

  (2)商品的原价不知道,怎么办?

  3、解决问题

  (1)学生尝试解决

  (2)汇报思路:找好对应关系

  (3)质疑:可不可以将商品原价假设成1?

  (4)验证:发现可以直接假设商品的原价是1

  4、回顾与反思:在解决问题的过程中,你有什么发现?有什么启示?

  三、巩固应用,内化提高

  1、91页“做一做”第3题

  2、练习十九的9-14题

  四、回顾整理,反思提升

  本节课你学习了什么知识?你有什么收获?

六年级上册数学教案14

  教学内容:

  课本P19页和练习五。

  教学目的:

  1、使学生理解倒数的意义。掌握求一个数的倒数的方法。

  2、渗透事物都是普遍联系观点的启蒙教育。

  教学重点:

  理解倒数的意义和怎样求倒数。

  教学难点:

  求倒数方法的叙述。

  教学过程:

  一、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

  二、自学新课:自学书本P19。

  并思考以下问题:

  1)什么叫倒数?

  2)怎么求一个数的倒数?

  3)是不是任何数都有倒数?小数有吗?带分数有吗?

  三、讨论辨析:

  1、什么叫倒数?

  2、看下面四道题,你能说一些什么有关“倒数”的话。

  3、存在倒数有那些条件

  1)两个数。

  2)这两个数的乘积是1。

  4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

  5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

  6、总结求一个数的.倒数的方法。

  四、练习

  1、判断下列各组数是否互为倒数,为什么?

  2、同座同学相互举出几组倒数。你怎么知道同学说的对不对?

  1)5的倒数是多少?

  2)所有的自然数都有倒数吗?1的倒数是几?

  3)0有没有倒数?为什么?

  4)怎样求一个数的倒数?

  3、完成课本P19页的“做一做” 。

  4、辨析:求3/5的倒数,写作:3/5=5/3。

  五、思考:0.2的倒数是多少?

  六、小结。

  请学生说一说这节课学习了哪些内容。

  七、作业:练习五3—8。

六年级上册数学教案15

  【教学内容】教材第38页例5。

  【教学目标】

  1、使学生在理解数量关系的基础上学会列方程,解答稍复杂的分数应用题。

  2、使学生能用列方程的方法解决一些简单的实际问题。

  3、培养学生的分析、判断和推理能力。

  【教学重难点】

  重点:找数量关系。

  难点:分析数量关系。

  【导学过程】

  一、复习准备

  1、根据题意,看图写出代数式。

  (1)苹果有akg,西瓜的质量比苹果轻。

  西瓜比苹果轻()kg,西瓜重()kg。

  (2)鸡有b只,鸭的只数比鸡少。

  鸭比鸡少()只,鸭有()只。

  指名汇报,并让其他的学生指出应把什么看作单位“1”。

  2、根据题意先写出数量关系式,再列出方程。

  (1)六(1)班有15人参加了合唱队,占全班人数的'。六(1)班有多少人?

  (2)小明的体重是35kg,是爸爸体重的,爸爸体重多少千克?

  二、自主探究

  1、创设情境,引出例5。(将上题中第(2)题第二个条件变为“他的体重比爸爸的体重轻”,其他不变,即为例5)

  2、审题。

  (1)看例题的插图,获取信息。独立填写“阅读与理解”,复述题意,说说知道了什么,要求什么。

  (2)分析题意,说说你对“小明的体重比爸爸的体重轻”的理解。

  (3)理解数量关系,让学生自己试着画图表示父子两人体重的数量关系。

  3、分析、解答。

  (1)出示线段图。

  (2)说说数量关系。

  (3)学生根据得到的数量关系列方程解答。

  (4)交流各自的解法。

  (5)阅读课本例5的“分析与解答”过程。

  4、改变例5。

  “回顾与反思”:看看小明的体重是否比爸爸轻,怎样检验?

  课件出示,爸爸体重75千克,小明的体重比爸爸轻,小明的体重是多少千克?

  (1)根据题意改变线段图。

  (2)根据图意解答。

  (3)启发学生与例5进行比较,说说你发现了什么?

  (4)教师小结:上面用方程解答例5的思路与分数乘法问题的思路是统一的,我们应该好好理解、运用它。

  三、实践应用

  1、看图口头编实际问题。

  组织学生观察分析线段图,然后独立做,最后指名尝试编,集体订正。

  2、完成教材练习八第10题(先尝试解答,后反馈并比较(1)、(2)和(3)、(4)的对比分析:为什么它的解法不同?有什么共同点?)

  四、课堂小结

  今天我们学习了用方程解答稍复杂的分数应用题,在解题时应注意哪些问题?解题关键是什么?

  五、课堂作业

  教材练习八第7、8、9题。

【六年级上册数学教案】相关文章:

六年级上册数学教案08-06

六年级上册数学教案10-25

人教版六年级上册数学教案10-16

【推荐】六年级上册数学教案10-19

(通用)六年级上册数学教案08-30

苏教版六年级上册《利息》数学教案06-04

六年级上册数学教案苏教版04-24

苏教版六年级上册《练习课》数学教案04-08

西师版六年级上册数学教案05-02