- 相关推荐
数学解题方法15篇[实用]
数学解题方法1
近几年,随着高考数学试题中的应用问题越来越多,阅读量逐渐增加,科学地使用时间,是临场发挥的一项重要内容。分配答题时间的基本原则就是保证在能得分的地方绝不丢分,不易得分的地方争取得分。在心目
![数学解题方法15篇[实用]](https://p.9136.com/00/l/cafdd1a705_5fbf7ee06bb1f.jpg)
中应有“分数时间比”的概念,花10分钟去做一道分值为12分的中档大题无疑比用10分钟去攻克1道分值为4分的中档填空题更有价值。有效地利用最好的答题时间段,通常各时间段内的答题效率是不同的,一般情况下,最后10分钟左右多数考生心理上会发生变化,影响正常答卷。特别是那些还没有答完试卷的'考生会分心、产生急躁心理,这个时间段效率要低于其它时间段。
在试卷发下来后,通过浏览全卷,大致了解试题的类型、数量、分值和难度,熟悉“题情”,进而初步确定各题目相应的作答时间。通常一般水平的考生,解答选择题(12个)不能超过40分钟,填空题(4个)不能超过15分钟,留下的时间给解答题(6个)和验算。当然这个时间安排还要因人而异。
在解答过程中,要注意原来的时间安排,譬如,1道题目计划用3分钟,但3分钟过后一点眉目也没有,则可以暂时跳过这道题;但若已接近成功,延长一点时间也是必要的。需要说明的是,分配时间应服从于考试成
功的目的,灵活掌握时间而不墨守最初安排。时间安排只是大致的整体调度,没有必要把时间精确到每1小题或是每1分钟。更不要因为时间安排过紧,造成太大的心理压力,而影响正常答卷。
一般地,在时间安排上有必要留出5—10分钟的检查时间,但若题量很大,对自己作答的准确性又较为放心的话,检查的时间可以缩短或去除。但是需要注意的是,通常数学试卷的设计只有少数优秀考生才可能在规定时间内答完。
数学解题方法2
一.基础篇之突破公式概念及图形
高中数学考试中涉及的公式概念图形不完全是课本中涉及的,有相当一部分内容需要通过做题不断的补充总结,那么概念公式怎么学习呢?
1.概念的学习:注重概念的内含和外延的'把握(如奇偶函数等),对于抽象的概念尽可能用自己的语言理解(如极值等),同时注意概念的相似,关联,正反对比。
2.公式的归纳学习:熟记课本公式,并在运用中简化公式以及归纳推导新公式
3.图形的学习;掌握基本图形以及基本图形的扩展图形。
二.基础篇之突破运算
运算的重要性不用我多说,运算怎么提高呢?
1.归纳图形运算。
2.归纳各类方程和不定方法计算如指对数方程,三角方程,根式方程等。
3.掌握特殊式子变形处理以及一般的式子处理思路如分式,根式等处理策略。
4.在平时计算时归纳容易忽视的细节运算以及一些快速特殊计算方法。
三.解题篇之选择题
选择题从四个方面进行归纳学习:
1.快速计算策略
2选项特征.
3题目信息暗示及一般处理方法如涉及抽象问题我们该怎样处理呢,遇到图形又怎样处理呢等
4.选择题中的一些特殊结论公式等的归纳
数学解题方法3
七年级数学教学中应用问题的教学是难点。这部分内容使不少学生望而却步。此时,若教师进行正确引导,能够化难为易,把学生引进快乐学习的殿堂。在教学中,教师注意从学生的基础入手,从他们生活实际入手,引入新知识,充分调动他们学习的积极性,逐步培养他们解决问题的能力。
一、从实际入手,树立学生的信心
大多数学生对解应用题存在畏难情绪,信心严重不足,不知道怎样去分析,去寻找题目中的数量关系。要解决好这一问题,还是要从基础入手,从简单的应用题开始。因为简单的应用题具有背景简单、语言简明的特点,便于学生审题,理顺数量关系,易于抓住问题的关键,建立数学模型,为解综合性更强的应用题打下基础。同时学习简单的应用题,又能使学生积累解题经验,增强学习应用题的信心。正如教育学和心理学指出的那样,“当学习的材料与学生已有的知识和生活经验相联系,学生对学习会有兴趣”。
例如,在七年级上册2。3“从买布问题说起——一元二次方程的讨论(2)”这一节课的教学中,我是这样引入的:大家知道“一路顺风”这个词语的意思吗?不少学生很快就说出来了。接着,我又提出,你能从字面上解释一下这个词语的意思吗?学生很开心,都说简单。于是,我又提出“一路顺风”你们经历过吗?为什么希望是一路顺风呢?这里面蕴含着什么样的数学问题?学生的积极性随着问题的一步步深入逐渐被调动起来,他们七嘴八舌地说开了:“顺风时骑车不要用太大的力气。”“顺风时速度快。”等,你能说出为什么顺风时速度快吗?在学生回答的基础上,及时总结出,顺风速=静风速+风速,逆风速=静风速—风速。如果把顺风、逆风换成顺水、逆水呢?由学生自己总结出顺水速度和逆水速度的公式。学生在理解的基础上加以适当地记忆,很快掌握了这个公式,这比死记硬背强多了。紧接着我又提出“一路顺风”还涉及到哪些量?顺风路程、顺风时间就呼之欲出了。我因势利导,引入课本上的例题“一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶用了2。5小时,已知水流速度是3千米/时,求船在静水中的平均速度?”学生自己分析,寻找题目中的已知量和未知量以及它们之间的关系。设船在静水中的平均速度为x千米/时。方程2(x+3)=2。5(x—3)很快就列出来了。
二、适时渗透,逐渐深入
学生都是具体的、活生生的个体。在设置问题时,要肯定学生认识活动的个体特殊性,这种特殊性不仅表现在已有的知识和经验的差别上,而且也表现在认知风格、学习态度、学习信念及学习动机等各方面的差异上。要提高学生应用数学的意识和能力,在日常教学中就要结合教学的内容,逐步深入。
针对上面的例题,学生列出方程后,紧接着又提出,此题中你还能求什么?学生思考后,很快想到还可求出顺水速度、逆水速度和甲乙两码头间的距离。那么怎样求甲乙两地的距离呢?学生回答求出速度后可以求路程。有没有其它的方法求呢?学生展开了讨论。他们认为也可以直接设未知数,但不少学生感觉直接设未知数求两地之间的距离比较困难。此时我引导学生回顾刚才讲解的问题,启发他们用列表的方式将题目中的已知量、未知量呈现出来。
在此基础上,学生都有了新领悟。
三、重视教学过程,培养建模能力
建模能力是数学应用能力的核心。数学建模是学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,是学生在真实的环境中体验“做”数学,其意义超出了解决问题的.本身。更为重要的是学生在建模过程中学会了如何探索数学,这就要求教师在平时的教学中不可只展现结果,更应展示思维过程,引导学生积极参与探索,使学生在长期的潜移默化中,逐渐学会思考、分析,不断提高解题能力。
针对上面的问题,不少学生在领会了以表格的形式体现的数量关系后,很快想到直接设未知数也可以借助于表格的形式寻找各量之间的关系。
设甲乙两地间的距离为x千米,根据路程、速度和时间的关系,可以表示出顺水速度和逆水速度。顺水速度和逆水速度有什么关系呢?讨论出静水速度是一个不变量,从而列出方程
四、不拘方法,培养思维能力
在解决实际问题时,学生往往会从自己的生活经验和角度出发,产生不同的思路,在教学过程中教师要鼓励学生从多个角度来思考,从而培养学生思维的广阔性和深刻性。
针对上面的例题,我进一步提问解决此题还有其它的思路吗?学生又展开讨论,此题除了静水速度、甲乙两地的距离不清楚外,顺水速度、逆水速度同样也是不清楚的。学生尝试着设顺水速度或逆水速度也能达到目的。最后让学生反思所找出的方法之间有没有必然的联系,找到解决问题的关键。一是路程速度和时间这三个量之间的关系;二是此题中有两个不变量甲、乙两地间的距离和轮船在静水中的平均速度。
数学教育家弗赖登塔尔曾经说过:“数学是现实的,学生从现实生活中学习数学,再把数学应用到现实中去。”根据这一理论,教师接下来设计了两道巩固性练习:1。一艘轮船从甲码头顺流行驶用了3。5小时,从乙码头返回甲码头逆流行驶用了4小时,已知船在静水中的速度为30千米/时,求水流速度。2。一架飞机本身的速度为800千米/时,它在空中最多只能飞行5小时就应返回,已知风速为20千米/时,求飞机最多飞出多远就返回才能安全?
课后作业由学生结合自己的实际情况编一道类似的题目并解答。根据课上及课后反馈的信息,这一节课的效果确实不错。
数学解题方法4
下面是对数学解题方法面积法的讲解,同学们认真看看。
面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的'方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
面积法对于立体图形类的证明题目是经常用到的,同学们认真学习,希望在这方面做的很好。
数学解题方法5
摘要:就数学的解题教学从重一题多解、重视一题多变到培养学生抓住问题的实质的能力;从尊重学生的思维选择到立足通法、兼顾巧法等作了阐述,认为对学生要加强思维教育,培养能力,数学解题教学才能收到好的效果。
关键词:数学教学;解题;思维;能力探讨
绝大部分的数学家和从事数学教育的工作者都肯定了解解题教学在数学教学中的重要性,学生数学思维能力的提高,只有在解决数学问题的思维实践中才能实现。对数学解题教学中思维教育应侧重于如何启发、引导,同时展示教师的思维过程来达到训练学生思维能力的目的。在解题教学中应注重从以下几个方面来培养学生的数学能力和数学素质。
一、重视一题多解,一题多变
解题过程中,教师应有目标、有计划地引导学生体会、提炼其隐含的数学思想方法,通过一题多解使学生在接受知识的同时,受到数学思想方法的熏陶和启迪,这样,才能把提高学生的能力落到实处。
一题多变常常能使学生把问题的诸方面都观察到,从而掌握这类问题的解题规律。例如求定义在一个闭区间上函数y=ax2+bx+c的值域时,我这样安排例题:求函数y=―x2+4x―2定义在区间[0,3]上的值域(显然其顶点横坐标―b2a=2),经过引导,学生懂了,会解了。进一步将这个表达式的定义域改为[0,4]→[2,5]→[3,5]→[-2,1]。通过这些变化就把这个问题的各个方面都讨论了,解决这类问题的规律也就摸到了。同时,还可以顺便引导学生在解决数学问题时的举一反三的想法。
二、培养学生抓住问题的能力
解题教学中,解题只是手段,重要的是通过解题教会学生思维,提高学生的能力。要努力提高每一道题的功效性,在错综纷杂的题型、套路中领略其万变不离其宗的实质,以不变应万变的策略,找出解题的思想方法,支解简化各环节。
三、发展学生的思维能力
教师讲题始终要坚持分析地讲,全面展示、暴露解题途径的寻找过程,“为什么要这样做”比“这样做”更重要。而有的教师解题总是演示“成功”,思路、方法一想就很正确、很巧妙,从不展示“失败”,展示在思路和方法碰壁时怎么办,如何从有限次失败后得到正确的思路和方法,其结果只能是教师讲得精彩,学生听得轻松,但碰到条件稍加变化的问题便束手无策,日积月累,学生就不会独立地思维和克服困难,当然也不会有独立的解题能力。
在寻求解题思路时,要让学生逐步学会怎样分析、怎样判断、怎样推理、怎样选择方法、怎样解决问题。注意展现:(1)解题的思维过程,使学生的思维与教师的思维产生共鸣,使教师的思维为学生的思维过渡到科学的思维架起桥梁,变传授过程为发现过程;(2)尝试探索发现的过程,把失败过程和失败到成功的过程暴露出来,从反思中使学生看到转变思维的方向、方式、方法和策略,缩小探索范围,尽快获得发现的成功,这在发展思维能力上无疑是一种很好的体验和进步。
四、尊重学生的思维选择,及时对解题过程进行调控
解题教学中,教师必须让学生真正参与数学的解题过程,及时地根据学生的信息反馈,对解题过程进行调控。特别是当学生的思路与教师原先的设想有差距,但对深入地理解问题又具有一定价值时,教师要因势利导,想学生所想,急学生所急,帮助学生分析思路受阻的原因,完善他们的想法,教会学生寻求出路的方法,引导学生分析方法的优劣,要让基础不同、思路各异的学生各有所得,只有这样,才能使不同层次的学生的`解题能力得到提高,使大多数学生建立起解题的信心,克服解题的恐惧感,体会成功的喜悦和树立战胜挫折的勇气。
五、适时设置解题陷阱,充分暴露典型错误
应当研究学生所犯的错误,并把错误看成是认识过程和认识学生数学思维规律的手段,教师应当利用学生所犯错误来促进他们加深对数学要素和规律性的理解。教师有意识地给学生设置解题陷阱,让学生陷进去,把典型错误暴露出来,引导学生积极思考,探索出正确的解题途径,是消除错误、治根治本的有效方法。
教学的理论与实验表明,处理学生的解题错误有很强的艺术性,处理得好,可让学生从错误中悟出新意,感受到探究问题的乐趣,从中学到比原问题更广的内容,既增加防止错误的免疫力,又能发展学生的智力。
需要注意的几个问题:1.例题的讲解追求的不是解题过程写得多么详细,而是解题的思维过程,这样学生才不会单纯模仿,不会缺乏独立分析问题的能力,遇到新问题才不会觉得束手无策。2.解题教学的关键是要努力提高每一道题的功效性。例题不要安排得太乱、太滥,要按知识线索有层次地、线条分明地安排,使学生通过这些例题方法的学习一步步地体会这部分内容的数学思维方法。
解题教学是一门科学,也是一门艺术,它对发展学生的思维,培养学生的能力,促进学生良好品质结构方面具有重大的作用。
六、立足通法,兼顾巧法
所谓通法,就是在解决问题(通常是某类问题)中具有普遍意义的方法。这种方法通常是以基础知识为依据,以基本方法为技能,它的解法思想合乎一般的思维规律,其具体操作过程必须为全体学生所掌握。
巧法,着眼于提高。巧法的灵魂在于“巧”,即在于它整体地把握问题,灵活地运用双基,巧妙地使用条件,是抽象、概括、发散、合理推理的产物。
解题教学中教师必须立足通法,兼顾巧法,必须引导学生从基本要求思想方法出发,加强对学生基本思想方法的启迪和训练,在基本方法已熟练的基础上,再从常规过渡到特技,这样才能促使学生思维进一步深化。
数学解题方法6
摸清题意
刚拿到试卷的时候心情一定会比较紧张,在这种紧张的状态下不要匆匆作答。首先要从头到尾、正面反面浏览全卷,尽可能从卷面上获取最多的信息。摸清题情的原则是:轻松解答那些一眼就可以看出结论来的简单选择题或者填空题;对不能立即作答的题目可以从心里分为比较熟悉和比较陌生两大类。对这些信息的掌握,可以确保不出现前面难题做不出,后面易题没时间做的尴尬局面。
三先三后
在浏览了试卷并做了简单题的第一遍解答之后,我们的情绪就应该稳定了很多,现在对自己也会信心十足。我们要明白一点,对于数学学科而言,能够拿到绝大部分分数就已经实属不易,所以要允许自己丢掉一些分数。在做题的时候我们要遵循三先三后的原则。首先是先易后难。这点很容易理解,就是我们要先做简单题,然后再做复杂题。当全部题目做完之后,如果还有时间,就再回来研究那些难题。当然,在这里也不是说在做题的时候,稍微遇到一点难题就跳过去,这样自己给自己遗留下的问题就太多了。也就违背了我们的原意。其次是先高后低。这里主要是指的倘若在时间不够用的情况下,我们应该遵守先做分数高的题目再做分数低的题目的顺序。这样能够拿到更多的总得分。并且,高分题目一般是分段得分,第一个或者第二个问题一般来说不会特别难,所以要尽可能地把这两问做出来,从总体上说,这样就会比拿出相应时间来做一道分数低的题目合算。最后是先同后异。这里说的先同后异其实指的是,在大顺序不变的情况下,可以把难题按照题目的大类进行区分,将同类型的题目放在一起考虑,因为这些题目所用到的知识点比较集中,在思考的时候就容易提高单位时间效益。
一快一慢
这里所谓的一快一慢指的是审题要慢,做题要快。题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。有一些条件看起来没有给出,但实际上细致审题你才会发现,这样就可以收集更多的已知信息,为做题正确率寻求保障。当思考出解题方法和思路之后,解答问题的时候就一定要简明扼要、快速规范。这样不仅给后面的题目赢得时间,更重要的是在保证踩到得分点上的基础上尽量简化解题步骤,可使得阅卷老师更加清晰地看出你的解题步骤。
分段得分
对于中考数学中的'难题,并不是说只让成绩优秀的学生拿分而其他学生不得分。实际上,中考数学的大题采取的是分段给分的策略。简单说来就是做对一步就给一步的分。这样看来,我们确保会做的题目不丢分,部分理解的题目力争多得分。
重点检查
卷子做完之后,有时间的话,要全面检查。如果时间不是很充裕,则要重点检查选择题、填空题、计算类的题目,因为这类题目稍有错误,可能一分不得,而证明题只要能证出来,一般不会出错或太大的错,得分相对有保证。当然,不是说这部分题不用检查,有时间的话,还是需要认真检查的。
数学学习方法推荐:
一、合理定位
填空题的后几题都是精心构思的新题目,必须认真对待;选择题的不少命题似是而非,难以捉摸;可是,不少学生却一带而过,直奔综合题,造成许多不应有的失误。其实,综合题的最后一个小题总是比较难,目的是提高考试的区分度,但是只有4分左右。如果暂且撇开,谨慎对待116分的题目,许多学生都能考出不俗的成绩。
二、吃透题意
数学试题的措词十分精确,读题时,一定要看清楚。例如:两圆相切,就包括外切和内切,缺一不可。如果试题与熟悉的例题相像,绝不可掉以轻心。例如抛物线顶点在坐标轴上就不同于顶点在X轴上。
三、步步为营
不少计算题的失误,都是因为打草稿时太潦草,匆忙抄到试卷上时又看错了,这样的毛病难以在考试时发现。正确的做法是:在试卷上列出详细的步骤,不要跳步。只有少量数学运算才用草稿。事实证明:踏实地完成每步运算,解题速度就快;把每个会做的题目做对,考分就高。
四、不慌不躁
在考试时难免有些题目一时想不出,千万不要钻牛角尖,因为所有试题包含的知识、能力要求都在考纲范围内,不妨先换一个题目做做,等一会儿往往就会豁然开朗了。综合题的题目内容长,容易使人心烦,我们不要想一口气吃掉整个题目,先做一个小题,后面的思路就好找了。
数学解题方法7
第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,综合运用知识为辅,第二轮复习以专题性复习为主,这一阶段所涉及的数学问题多半是综合性问题,提高解数学综合性问题的能力是提高高考数学成绩的根本保证。解好综合题对于那些想考一流大学,并对数学成绩期望值较高的.同学来说,是一道生命线,往往成也萧何败也萧何;对于那些定位在二流大学的学生而言,这里可是放手一搏的好地方。
一、综合题在高考试卷中的位置与作用
数学综合性试题常常是高考试卷中把关题和压轴题。在高考中举足轻重,高考的区分层次和选拔使命主要靠这类题型来完成预设目标。目前的高考综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题。综合题是高考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创新能力等特点。
二、解综合性问题的三字诀"三性":综合题从题设到结论,从题型到内容,条件隐蔽,变化多样,因此就决定了审题思考的复杂性和解题设计的多样性。在审题思考中,要把"三性",即(1)目的性:明确解题结果的终极目标和每一步骤分项目标。(2)准确性:提高概念把握的准确性和运算的准确性。(3)隐含性:注意题设条件的隐含性。审题这第一步,不要怕慢,其实慢中有快,解题方向明确,解题手段合理,这是提高解题速度和准确性的前提和保证。
数学解题方法8
(1)正向思维。
对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。
顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的'不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。
(3)正逆结合。
对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
数学解题方法9
1.“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:
由于该四边形有三个定点,从而可把动四边形分割成一个动三角形与一个定三角形(连结两个定点,即可得到一个定三角形)的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同。
2、“定四边形面积的求解”问题:
有两种常见解决的方案:
方案(一):连接一条对角线,分成两个三角形面积之和;
方案(二):过不在x轴或y轴上的四边形的一个顶点,向x轴(或y轴)作垂线,或者把该点与原点连结起来,分割成一个梯形(常为直角梯形)和一些三角形的面积之和(或差),或几个基本模型的三角形面积的和(差)
3.“两个三角形相似”的问题:
4.“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:
首先弄清题中是否规定了哪个点为等腰三角形的顶点。(若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形,则有三种情况)。先借助于动点所在图象的解析式,表示出动点的'坐标(一母示),按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程。解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点(就是不能构成三角形这个题意)。
数学解题方法10
初中数学10种解题方法之待定系数法
待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的'系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
初中数学10种解题方法之待定系数法,相信大家看过后可以做好笔记并灵活运用了吧。接下来还有更多的初中数学讯息尽在哦。
数学解题方法11
随着20xx年考研数学大纲的出炉,考生考研数学的复习也进入了关键阶段,考研数学教研室为了帮助大家更好的备考,在此对高等数学中考查综合性强,所占比重最大的部分积分进行重难点分析并介绍基本的解题方法和思路。
积分是高等数学中的一种重要运算,主要可以分为一元函数积分和多元函数积分两大类。其中,多元函数积分学又包含二重积分、三重积分以及积分的应用等。一元函数积分是整个积分的基础,主要包括不定积分、定积分、变限积分和反常积分等几类常用的积分。其中,不定积分又是基础中的基础,所有积分的计算从方法上最终都会追溯到不定积分的计算方法上去。所以在考试中这部分计算的考查当然是必不可少的,相关的计算方法如分部积分法、换元积分法等也都是考生在做题时常常会用到的。关于这些方法,考生不仅要能够熟练运用,更重要的是要知道它们的适用情况,多加练习才能在考试中灵活处理。定积分的地位也很重要,除了计算之外,定积分的性质、积分中值定理都是常考点,特别要强调的是定积分的应用,涉及到应用就需要考生对概念有一定的理解,能够从实际问题中抽象出数学模型进行求解,所以,应用这一部分着重强调大家对概念的理解和把握。剩余两类常见积分中,变上限积分常常与导数一起进行考查,反常积分可以看成是对变限积分取极限。所以,总的来说这部分知识难度不大,复习时考生需要在理解的基础上多加练习。
多元函数积分中,二重积分对数一、数二、数三都有要求。这部分的计算要求考生会交换积分次序、灵活使用直角坐标系和极坐标系及两者之间的转换求解积分。此外,计算时要注意使用对称性、奇偶性等性质简化运算。三重积分、两种曲线积分、两种曲面积分以及积分的物理学应用等只对数一的考生有要求,对数二、数三的考生是不要求的,这一点在大纲上有明确的说明。三重积分是二重积分的一个引申,从几何意义上讲,它将平面上的积分发展到了空间上的积分,因此通常与向量和空间解析几何这部分知识联系起来考查。主要有三种常用的计算方法:直角坐标系中的先一后二与先二后一法、柱坐标解法和球坐标法。在应用这三种方法解题时,考生一定要能够画出积分区域、掌握各个公式中参数的意义及取值范围,能够知道在何种情况下选择哪种方法进行解题,方法的.选择不仅直接影响考生解题的速度、效率,甚至决定了能否计算出最终的结果。因此,相对来说这部分难度较大,考生往往得分较低,在考试中对学生的区分度大,数一考生在复习时应注意多思考、多总结。
以上就是我们高等数学积分部分的重难点及基本解题方法,可以看出这部分考查的知识点相对来说还是比较多的,在考研数学中也占据了非常重要的地位。其实积分不仅影响考生高等数学的成绩,对概率论学科成绩也有影响,因为概率论中很大一部分题目的求解是以积分为工具的。因此,学好这部分内容,不仅仅是高等数学取得高分所必须的,更是考研数学取得高分所必须的。所以考生一定要引起足够的重视。
大纲就是考研的指南针,有了复习的方向,再往深往宽了去拓展,才能真正掌握考研知识。考研在此祝愿各位考研学子都能名题金榜,笑傲考研。
数学解题方法12
初中数学选择题的解法的研究,可谓是仁者见仁,智者见智.当然,仅仅有思路还是不够的,“解题思路”在某种程度上来说,属于理论上的“定性”,要想解具体的题目,还得有科学、合理、简便的方法.
1、直接法 . 有些选择题是由计算题、应用题、证明题、判断题改编而成的.这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的`运算、严谨的推理、合理的验证得出正确的结论,从而确定选项的方法.
2、筛选法 . 初中数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的错误答案,找到符合题意的正确结论.可通过筛除一些较易判定的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案.如筛去不合题意的以后,结论只有一个,则为应选项.
3、验证法 . 通过对试题的观察、分析、确定,将各选项逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选项正误的方法.
4、特殊值法 . 有些选择题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单.
5、图象法 . 在解答选择题的过程中,可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论.
6、试探法 . 对于综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个数学模型,然后通过试探法来选择,并注意灵活地运用上述多种方法.
数学解题方法13
1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一
5、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的.对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
数学解题方法14
高中数学解题的方法
对于数学解题思维过程,G . 波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。
第一阶段:理解问题是解题思维活动的开始。
第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。
第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。
第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。
数学解题的技巧
为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。
一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。
基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。
一、 熟悉化策略
所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。
常用的途径有:
(一)、充分联想回忆基本知识和题型:
按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
(二)、全方位、多角度分析题意:
对于同一道数学题,常常可以不同的侧面、不同的`角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。
(三)恰当构造辅助元素:
数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。
数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。
二、简单化策略
所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。
简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。
因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。
高二数学解析几何训练题精选
一、选择题:
1、直线 的倾斜角是______。
A. B. C. D.
2、直线m、l关于直线x = y对称,若l的方程为 ,则m的方程为_____。
A. B. C. D.
3、已知平面内有一长为4的定线段AB,动点P满足PA—PB=3,O为AB中点,则OP的最小值为______ 。
A.1 B. C.2 D.3
4、点P分有向线段 成定比λ,若λ∈ ,则λ所对应的点P的集合是___。
A.线段 B.线段 的延长线 C.射线 D.线段 的反向延长线
5 、已知直线L经过点A 与点B ,则该直线的倾斜角为______。
A.150° B.135° C.75° D.45°
6、经过点A 且与直线 垂直的直线为______。
A. B. C. D.
7、经过点 且与直线 所成角为30°的直线方程为______。
A. B. 或
C. D. 或
8、已知点A 和点B ,直线m过点P 且与线段AB相交,则直线m的斜率k的取值范围是______。
A. B. C. D.
9、两不重合直线 和 相互平行的条件是______。
A. B. 或 C. D.
10、过 且倾斜角为15°的直线方程为______。
A. B. C. D.
数学解题方法15
减少初中解题错误的方法是预防和排除干扰。为此,要抓好课前、课内、 课后三个环节。
(一)课前准备要有预见性
预防错误的发生,是减少初中学生解题错误的主要方法。讲课之前,如果能预见到学生学习本课内容可能产生的错误,就能够在课内讲解时有意识地指出并加以强调,从而有效地控制错误的发生。
例如,学习方程x/0.7-(0.17-0.2x)/0.03=1之前,要预见到本题要用分式的基本性质与等式的性质,两者有可能混淆,因而要在复习时准备一些分数的基本性质与等式的性质的练习,弄清两者的不同,避免产生混乱与错误。因此学习时,要仔细研究正文中的防错文字、例题后的注意、小结与复习中的应该注意的几个问题等,能够预先明了容易出错之处,防患于未然。如果出现问题而未查觉,错误没有得到及时的纠正,则遗患无穷,不仅影响当时的学习,还会影响以后的学习。因此,预见错误并有效防范能够为揭示错误、消灭错误打下基础。
(二)课内学习要有针对性
在课内学习时,要对可能出现的问题进行针对性的学习。对于容易混淆的概念,要用对比的`方法,弄清它们的区别和联系。对于规律,应搞清它们的来源,分清它们的条件和结论,了解它们的用途和适用范围,以及应用时应注意的问题。展示揭示错误、排除错误的手段,会识别错误、改正错误。对错误回答,要分析其原因,进行针对性讲解,利用反面知识巩固正面知识。课堂练习是发现错误的另一条途径,出现问题,及时解决。总之,要通过课堂教学,不仅教会学生知识,而且要学会识别对错,知错能改。
(三)课后学习要有总结性
要认真分析作业中的问题,总结出典型错误,加以评述。通过讲评,进行适当的复习与总结,也要再经历一次调试与修正的过程,增强识别、改正错误的能力。
【数学解题方】相关文章:
数学解题方法11-28
高一数学解题方法03-03
数学解题方法合集【15篇】11-28
高一数学解题套路03-08
数学解题的七种技巧12-04
数学解题方法范例15篇11-28
中考数学大题的解题技巧有哪些06-21
高一数学解题套路通用3篇03-08
关于数学解题技巧的三个口诀09-15