倍的初步认识的练习教案设计

时间:2023-06-11 19:26:36 炜玲 其它教案 我要投稿
  • 相关推荐

倍的初步认识的练习教案设计(通用11篇)

  作为一名专为他人授业解惑的人民教师,常常需要准备教案,借助教案可以有效提升自己的教学能力。写教案需要注意哪些格式呢?下面是小编收集整理的倍的初步认识的练习教案设计(通用11篇),欢迎阅读,希望大家能够喜欢。

倍的初步认识的练习教案设计(通用11篇)

  倍的初步认识的练习教案设计 篇1

  教学目的:

  帮助学生进一步认识求一个数的几倍是多少的乘法应用题的结构和数量关系,使学生进一步巩固解答求一个数的几倍是多少的应用题方法,并能正确地进行解答。初步培养学生分析、推理的能力。

  教学准备:

  口算卡片,实物投影仪。

  教学过程:

  一、计算练习。

  1.口算。

  用卡片出示已学过的一些乘法算式,指名口算。

  2.完成“想想做做”6。

  先指名说说每道题的运算顺序,再计算,集体校对。

  二、应用题练习。

  1.看图口头列式解答:

  (1)小鸡:

  小鸭:

  是小鸡的3倍

  (2)分析:小鸡有几只,小鸭的只数是小鸡的几倍,也就是几个几只?求小鸭有多少只,就是求什么,用什么方法计算?

  (3)学生独立列式解答,指名说说为什么用乘法算?

  (4)老师小结:求一个数的几倍是多少,就是求几个几是多少,因此用乘法计算。

  2.完成“想想做做”7。

  (1)出示第7题图,提问:一只小船坐多少人?一只大船坐的人数是小船的几倍?求什么?

  指名完整地说说题意。

  (2)分析:一只大船坐的人数是小船的4倍,也就是大船可以坐几个几人?求大船坐多少人,也就是求什么,用什么方法计算?

  (3)学生独立列式计算、口答,集体订正时指名说说解题思路。

  3.完成“想想做做”8。

  (1)出示第8题,指名说说图意,题中告诉我们什么?求什么?(题中已知小松鼠采了5个松果,大松鼠采的个数是小松鼠的3倍。求大松鼠采了多少个松果?)

  (2)学生独立列式计算,口答。集体订正时说说为什么用乘法计算?

  4、完成“想想做做”9。

  出示第9题,说说这题有几个问题?

  学生独立解答,集体订正时说说各是怎样列式的?并指导工作名学生用两句话口答题中所问的两个问题。

  三、想一想。

  完成“想想做做”10。在()里填上合适的数。

  1、出示第一组数3,6,9,12,(),()。观察:这一组中后面的数和前面的.数比,怎样?(多3)

  想一想后面的两格该怎样填?为什么?

  2、独立完成第2小题,说说你为什么这样填?

  四、作业布置:

  1、列式计算。

  (1)4个5是多少?

  (2)4的3倍是多少?

  (3)4和5的和是多少?

  (4)3的2倍是多少?

  2、应用题:

  (1)小红用5天的时间读完一本书,每天读4页,这本书有多少页?

  (2)小红读一本书每天读4页,小明读的页数是小红的3倍,小明每天读多少页?

  小红读一本书第一天读4页,第二天读5页,两天一共读多少页?

  3、你能在()里填上合适的数吗?

  (1)1,4,7,10,(),()。

  (2)1,2,4,7,(),()。

  倍的初步认识的练习教案设计 篇2

  教学目标

  知识目标

  1。使学生初步掌握2、5的倍数的特征。

  2。使学生知道奇数、偶数的概念。

  能力目标

  1。会判断一个数是否能被2、5整除。

  2。会判断奇数、偶数。

  3。培养类推能力及主动获取知识的能力。

  情感目标

  激发学生的学习兴趣。

  教学重点

  掌握2、5的倍数的特征及奇数、偶数的概念。

  教学难点

  灵活运用2、5的倍数的特征及奇数、偶数的概念进行综合判断。

  教学过程

  一、激趣引入 走进课堂

  1。前面我们学习了自然数、整数、因数,后来又学习了倍数,我们都说自己学的很棒,今天我就考考大家

  出示:1~100的自然数。

  2。导入:

  这是1~100的自然数。

  你能很快找出2的所有倍数吗,并用蓝笔圈出来。试一试!

  3。同桌结组,比试结果。

  二、探究新知

  1。2的倍数的特征。

  你们圈出的这些数和2有什么联系

  为什么它们都是2的倍数

  这些数是分别用2X1 2X2 2X3 2X4 2X5 ……得来的

  请大家观察这些数,你发现这些数有什么特征?

  这些数个位上是0、2、4、6、8中的一个。

  这个规律正确吗?请同学们任写一些大一点的'数验证一下。(学生写数验证,小组内讨论)

  学生汇报,师生共同总结:看来判断一个数是不是2的倍数,只要看这个数的个数是不是0、2、4、6、8就可以了。

  三、练习 出示课本第20页第一题

  自学 奇数、偶数

  1、关于一个数是不是2的倍数,还有很多知识,你想知道吗?请你打开课本第17页自学。

  你们从书上还知道了些什么?

  自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。

  0也是偶数。(因为0也是2的倍数,所以也是偶数)

  双数指的就是偶数,那么单数指什么呢?

  学生说:奇数

  2、巩固练习 出示课本第17页做一做

  学生口答

  根据上面的学习,你们还能想到哪些数学知识呢?

  自然数根据是不是2的倍数,可分为奇数和偶数。

  因为0、2、4、6、8都是偶数,所以也可以说“个位上是偶数的数都是偶数”。

  3、联系生活

  在生活中,你在哪儿还见过奇数和偶数?

  我的身高148厘米,148就是一个偶数

  2008是个偶数

  同学们真有心,在我们的生活中经常用奇数、偶数对事物进行分类。

  看来奇数、偶数给我们的学习、生活带来不少方便呢。

  2、5的倍数的特征。

  自主探索5的倍数的特征。

  在课本上有100以内数的表格,请同学们打开书,找出5的倍数,看看有什么规律,和你的同桌说一说,并想办法验证你所发现的规律。

  师生共同总结:个位上是0或5的数,是5的倍数。

  3、既是2的倍数,又是5的倍数的数的特征

  判断:下面哪些数是2的倍数?哪些数是5的倍数?哪些数既是2又是5的倍数?(60 30)

  60、75、106,30,521

  ①引导学生思考:一个数既是2的倍数又是5的倍数,这个数有什么特征?

  ②汇报结果:说说你是怎样判断的?

  ③引导总结:个位上为0的数既是2的倍数又是5的倍数。

  三、巩固发展:

  (1)套圈游戏:把下面的数填在圈里。

  18 24 25 30 35 36 40 42 45 46 50 65 80 100

  ①2的倍数:

  ②5的倍数:

  ③同时是2和5的倍数:

  (2)判断。

  ①一个自然数不是奇数就是偶数。 ( )

  ②能被2除尽的数都是偶数。 ( )

  ③同时是2和5倍数的数,个位上的数字一定是0。 ( )

  四、全课小结:

  这节课你学到了哪些知识?

  倍的初步认识的练习教案设计 篇3

  教学目标:

  1。学生通过回忆和整理,进一步明确因数和倍数的相关知识,加深认识相关概念之间的联系与区别,能求两个数的公因数和公倍数,并能运用这些知识解决相关实际问题。

  2。学生在应用相关知识进行判断和推理的过程中,能说明思考过程,进一步培养归纳概括和演绎推理等思维能力,进一步增强分析问题和解决问题的能力。

  3。学生进一步体会数学知识之间的内在联系,感受数学思考的严谨性和数学结论的确定性,激发学习数学的`兴趣和学好数学的自信心。

  教学重点:

  掌握倍数和因数等相关概念,以及应用概念判断、推理。

  教学难点:

  理解相关概念的联系和区别。

  教学过程:

  一、揭示课题

  1。回顾知识。

  提问:上节课,我们已经复习了整数和小数的有关知识。

  在整数知识里,我们还学习了因数和倍数,谁能来说说你是怎样理解因数和倍数的?一个数的因数和倍数各有什么特点?

  结合学生交流,板书。

  2。揭示课题。

  引入:这节课,我们复习因数和倍数的相关知识。

  通过复习,能进一步了解关于因数和倍数的知识,理解它们之间的联系和区别,并能应用这些知识。

  二、基本练习

  1。知识梳理。

  提高:回想一下,在学习因数和倍数时,我们还学习了哪些相关的知识?

  学生回顾,交流,教师适当引导回顾。

  提问:2、5、3的倍数各有什么特征?什么叫奇数,什么叫偶像?什么叫质数,什么叫合数?什么叫公因数和最大公因数?什么叫公倍数和最小公倍数?

  根据学生回答,板书整理。

  2。做练习与实践第10题。

  学生独立完成,指名板演。

  集体交流,让学生说说找一个数的因数和倍数的方法。

  3。做练习与实践第11题。

  出示题目,学生直接口答。

  提问:怎样判断一个数是不是2的倍数?判断是3和5的倍数呢?

  追问:这里哪些是偶数,哪些是奇数?说说你是怎样想的。

  4。做练习与实践第12题。

  学生先独立写出质数和合数,再指名口答。

  追问:最小质数是几?最小的合数呢?

  倍的初步认识的练习教案设计 篇4

  教学目标

  1、会利用列举法和短除法找出两个数的公倍数和最小公倍数。

  2、理解分倍数和最小公倍数的含义。

  3、在探索中发现,在发现中体验数学的自身规律的魅力,从而激发学生持久的学习兴趣。

  教学重点

  教学难点理解两个数的公倍数和最小公倍数的意义,能正确地运用和列举法和短除法确定两个数的最小公倍数。

  教学方法合作学习法、小组探究法、知识迁移法

  教学准备复习题

  教学过程:

  一、温故知新

  1、什么叫公因数?

  2、什么叫最大公因数?

  3、写出下列各组的最大公因数

  3和7 4和6 9和18 12和30

  引出新课

  二、师生共研

  1、公倍数和最小公倍数的认识。

  以4和6这组数为例,就在50以内数表中找一找。你发现了什么?

  (1)4的倍数:4、8、12、13、20、24、28、32、36、40、44、48。

  (2)6的倍数:6、12、18、24、30、36、42、48。

  (3)两个都有的:12、24、36、48。

  引出课题:公倍数和最小公倍数

  2、怎样找出两个数的最小公倍数介绍短除法

  (1)让学生以小组的形式探讨,看看如何用短除法来求两个数的最小公倍数。再交流。

  (2)反馈时围饶着以下几个方面交流:

  短除式中除数是2的什么数?

  为什么在得出商2和3时不再往下除?

  4和6的最小公倍数是怎么计算的?

  (3)师生共同探究与交流。

  (4)试一试:你能找出12和16的公倍数和最小公倍数吗?

  让学生用自己喜欢的方式找一找,再用另一种验证。

  重点反馈短除法。

  3、探究特殊关系的两数怎样确定它们的.最小公倍数。

  先让学生独立完成

  思考后交流自己的发现

  三、全课总结

  1、这节课我们交的新朋友是什么?你现在对它知道多少?

  2、怎样找两个数的最小公倍数?

  (1)先定关系

  (2)确定用什么方法找

  3、有什么问题或发现?

  四、布置作业:

  2、3、4、5

  倍的初步认识的练习教案设计 篇5

  教学目标

  1。掌握公倍数、最小公倍数两个概念。

  2。理解求最小公倍数的算理,掌握用分解质因数求最小公倍数的方法。

  教学重点

  建立公倍数和最小公倍数的概念,掌握求两个数最小公倍数的方法。

  教学难点

  理解求两个数最小公倍数的算理。

  教学步骤

  一、铺垫孕伏。

  1。导入:这节课我们开始学习有关最小公倍数的知识。

  (板书:最小公倍数)

  2。复习倍数的概念。

  二、探究新知。

  教学例1

  例1、顺次写出4的几个倍数和6的几个倍数。它们公有的倍数是哪几个?其中最小的是多少?

  4的倍数有:4、8、12、16、20、24、28、32、36……

  6的倍数有:6、12、18、24、30、36……

  4和6的公倍数有:12、24、36……

  其中最小的一个是12。

  1、学生分组讨论总结公倍数、最小公倍数的意义。

  2、用集合图表示4和6的公倍数。

  3、质疑:两个数的公倍数有什么特点?有没有最大的公倍数?

  明确:因为每一个数的倍数的个数都是无限的,所以两个数的公倍数的个数也是无限的。因此,两个数没有最大的倍数。

  4、反馈练习。

  把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几。

  明确:50以内6和8的公倍数只有2个;如果扩展数的范围,也就是50以外6和8的公倍数则是无限的。

  (二)教学例2

  引入:我们用分解质因数的方法求两个数的最小公倍数。

  例2:求18和30的最小公倍数。

  1、用短除式分别把18和30分解质因数。

  板书:18=2×3×3

  30=2×3×5

  教师提问:18的倍数必须包含哪些质因数?

  (18的倍数包含18的所有质因数)

  30的倍数必须包含哪些质因数?

  (30的倍数包含30的所有质因数)

  18和30的公倍数必须包含哪些质因数?

  (既要包含18的所有质因数,又要包含30的所有质因数)

  2、观察集合图:18和30的最小公倍数应包含哪些质因数?

  教师明确:18和30的最小公倍数里,只要包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了。2×3×3×5=90,所以18和30的最小公倍数是90。

  3、小组讨论:如果少一个或多一个质因数行不行?

  教师明确:如果少一个质因数,就不能保证公倍数里包含18和30全部的质因数,因而就不能得到它们的最小公倍数;如果多一个质因数,虽是18和30的公倍数,但不能保证是最小公倍数。

  板书:

  18和30的最小公倍数是2×3×3×5=90

  4、反馈练习。

  (1)先把下面两个数分解质因数,再求出它们的最小公倍数。

  30=()×()×()

  42=()×()×()

  30和42的最小公倍数是()×()×()×()=()

  (2)A=2×2B=2×2×3

  A和B的最小公倍数是()×()×()=()

  (3)用分解质因数法求24和18的最小公倍数时,小华得72,小林得144。谁做错了?

  可能错在哪里?

  5、求最小公倍数的一般书写格式。

  ①引导学生把两个短除式合并成一个。

  板书:

  ②明确:综合短除式中所有除数和商与18和30的最小公倍数90所包含的`所有质因数是一一对应的,因此把短除式中所有的除数和商乘起来,就得到18和30的最小公倍数。

  ③反馈练习:求30和45的最小公倍数。

  ④总结方法:求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来。

  ⑤反馈练习:求下面每组数的最小公倍数

  6和824和2028和2116和72

  三、全课小结。

  今天这节课我们主要研究了用什么方法求两个数的最小公倍数,它是为以后学习通分做准备的,希望大家能熟练的掌握这部分知识。

  四、随堂练习

  1。填空。

  A=2×2×5

  B=()×5×()

  A和B和最小公倍数是()。A和B的最小公倍数是2×2×5×7=140。

  2。判断。

  (1)两个数的积一定是这两个数的公倍数。()

  (2)两个数的积一定是这两个数的最小公倍数。()

  五、布置作业。

  求下面每组数的最小公倍数。

  12和1530和4036和5422和33

  倍的初步认识的练习教案设计 篇6

  教学目标:

  使学生在理解自然数,整数意义的基础上理解整除。约数和倍数的意义。能正确的判别整除和除尽,约数和倍数可含义,为学生求最带公约数和最小公倍数大好基础。

  教学过程:

  一、复习

  1、学生回答

  (1)什么叫做自然数?

  (2)哪些是整数?

  (3)整数和自然数有什么关系?

  二、引入新课

  1、观察除法算式

  15÷3=31.5÷3=0.5

  24÷4=63.6÷09=4

  80÷20=416÷3=5……1

  2、找出左边三题和右边三题有什么不同?

  3、回答提问

  左边:被除数、除数、商都是自然数

  右边:被除数、除数、商是小数且有些还有余数

  4、揭示整除的意义

  5、讲解约数也倍数两个概念。

  6、例题讲解

  15除以5,商是3,没有余数----15能被5整除

  如果数a能被数b整除,a就叫b的倍数,b就叫做a的约数。

  7、整除与除尽的概念区别

  除尽包括整除,能除尽的不一定能整除,能整除的一定能除尽。

  三、巩固练习

  四、布置作业

  反思:数的.整除应强调以下几点:

  1、数的整除里的数指自然数。

  2、只有当被除数和除数、商都是自然数的时候,且没有余数才能说整除,

  3、应让学生通过多种渠道知道倍数和约数的概念。因为这在以后的教学中是非常重要的。

  4、区别整除与除尽的关系。应通过多种例子让学生真正的了解。

  倍的初步认识的练习教案设计 篇7

  教学目标:

  1、使学生学会找出一个数的约数的方法,能正确、便捷地找出一个数的约数。

  2、学会找出一个数的倍数的方法,能正确地找出一个数的一些倍数。

  教学过程:

  一、准备题

  1、什么是整除?

  2、25和5,谁能被谁整除,谁是谁的倍数,谁是谁的约数?

  二、教学例118和24的约数各有哪几个?

  1、首先明确找一个数的约数,就是看这个数能被那些自然数整除?

  找18的约数,就是看18能被哪些自然数整除:18除以()=()

  2、找约数的方法;

  A、从最小的自然数1找起,也就是最小的约数找起,一直找到它本身。

  1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18

  B、用一一对应的试除法来做:也从最小的自然数试除,在能整除的时候,除数和商都是这个数的约数,不成整除的时候,除数和商都不是这个数的约数,一直除到除数比商大为止。

  18/1=18(1和18都是18的约数)

  18/2=9(2和9都是18的约数)

  18/3=6(3和6都是18的约数)

  18/4不能整除

  18/6=3除数已比商大。

  18的约数按顺序排列是:1、2、3、6、9、18。

  3、用同样的方法找24的约数。

  24/1=24(1和24都是24的约数)

  24/2=12(1和24都是24的约数)

  24/3=8(1和24都是24的约数)

  24/4=6(1和24都是24的约数)

  24/5不能整除

  24/6=4除数已比商大。

  4、观察约数的特征:

  18、24的约数也可以分别用图表示

  思考:根据上面的图回答

  1、约数中最小的一个是什么数?(1)

  2、约数中最大的一个是什么数?(本身)

  3、一个数的约数的个数是有限的。

  1、2、3、6、9、18

  1、2、3、4、6、8、12、24

  18的约数24的约数

  5、练一练

  找15和36的约数各有哪几个?

  三、教学例23和5的倍数各有哪些?

  1、求一个数的倍数,可以把这个数分别乘以1、2、3…..。所以

  3的倍数有3、6、9、12、15、18、21、24、27……

  5的倍数有5、10、15、20……….

  3、6、9、12、15、18……

  2、3、5的倍数也可以分别用图表示:

  5、10、15、20、25、30……

  3的.倍数5的倍数

  观察上图发现:(1)一个数最小的倍数是什么数?(本身)

  (2)一个数有没有最大的倍数?(没有)

  (3)一个数的倍数的个数是无限的。

  2、练一练

  (1)50以内4、9的倍数各有哪几个?

  四、巩固练习

  1、在下面的圈里填上适当的数

  2、在4、8、16、32、40、48、64、80这几个数中,

  80的约数有(4、8、16、40、80),

  8的倍数有(8、16、32、40、48、64、80)

  3、32能被哪几个数整除?32有哪几个约数?32是哪几个数的倍数?

  32能被1、32;2、16、4、8整除。32的约数有1、32、2、16、4、8。32是1、32、4、8、2、16的倍数。

  五、布置作业

  反思:在教学找一个数的约数和倍数的时候,在以下几个方面的教学应加强:

  1、约数中最大的和最小的约数是什么。

  2、倍数中最大的和最小的倍数是什么

  3、强调一个数最大的约数和最小的倍数是一样大的是它本身,。

  4、如何找出所有的约数,而且确认已全部找出的方法应加强。

  倍的初步认识的练习教案设计 篇8

  学习内容:

  人教版小学数学五年级下册第21页第8题、第22页。

  学习目标:

  1.通过综合练习,我能熟练掌握2、5、3的倍数的特征。

  2.我能运用2、5、3的倍数的特征解决问题。

  学习重点:

  熟练掌握2、5、3的倍数的特征。

  学习难点:

  运用2、5、3的倍数的特征解决综合问题。

  教学过程:

  一、导入新课

  xxx

  二、检查独学

  1.互动分享独学部分的完成情况。

  2.质疑探讨。

  三、合作探究

  1.小组合作,完成课本第21页第8题。

  (1)3个3的倍数的偶数________________

  (2)3个5的倍数的奇数________________

  讨论:你能说出3个既是3的'倍数又是5的倍数的偶数或奇数吗?

  2.自主完成第22页第10题,然后与同伴交流。

  3.小组合作,完成第11题,然后组内代表汇报。

  4.小组交流“生活中的数学”。

  倍的初步认识的练习教案设计 篇9

  教学目标:

  1、结合具体情境,体会公倍数和最小公倍数的应用,理解公倍数和最小公倍数的意义。

  2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

  3、培养学生推理、归纳、总结和概括能力。

  教学重点:

  学会用列举法找出两个数的最小公倍数。

  教学难点:

  理解公倍数、最小公倍数的意义。

  教学过程:

  一、以趣激疑

  比比谁的声音亮?请两组学生报数,并请报到2、3倍数的同学分别起立。问:你发现了什么?为什么有些人起立了两次?让学生初步感受有些数既是2的倍数又是3的倍数。(教师引导学生用“既是…又是…”来表达想法。)

  师:6、12、18、24……既是2的倍数又是3的倍数,我们就可以说6、12、18、24……是2和3的公倍数。(师板书“公倍数” )

  师:同学们,今天我们就一起来研究有关“公倍数”的问题。

  二、创设情境,感知概念

  1、两个数的公倍数和最小公倍数的概念教学

  师:同学们,你们喜欢阿凡提吗?为什么喜欢他?(他聪明、机智、幽默、……)今天老师也给你们讲个阿凡提的故事:从前有个长工,在巴依老爷家干了一年也没有拿到一个铜板。长工们于是自发地组织了起来并邀请阿凡提帮他们去向巴依老爷讨工资。巴依老爷含着烟斗冷笑着说:“工资我可以给你,不过我的钱都在我的账房先生那里。从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。到了某天,他真的从巴依老爷家帮长工拿到了工钱。

  请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?你准备如何解决这个问题?

  让学生独立思考,整理解决问题的思路,并在四人小组里交流、讨论。全班汇报,交流想法。(同学们达成共识:要先分别找出巴依老爷、账房先生的休息日、再找出他们两人的共同休息日。)

  同桌两人合作,通过在日历上圈一圈、本子上写一写等方式,寻求解决的办法。师巡视,并重点引导学生辨析休息日的日期应是4和6的公倍数,而不是3和5的公倍数。

  全班交流,汇报。

  师板书:巴依老爷的休息日:4、8、12、16、20、24、28

  账房先生的休息日:6、12、18、24、30

  他们八月份的共同休息日:12、24

  这些数据说明了什么?如果阿凡提8日这天去巴依老爷家行吗?那18日这天去巴依老爷家行吗?引导学生明确阿凡提要把事情办好,只有在巴依老爷和账房先生都在家休息的日子去才行。所以阿凡提可以在12日和24日这两天去找巴依老爷和账房先生。

  你们猜猜阿凡提会哪一天去巴依老爷家呢?

  师板书:最早的共同休息日:12

  师:你们真聪明,用自己的智慧解决了问题。现在我们一起用数学的眼光,来看看巴依老爷和账房先生的休息日的数据有什么特点?根据学生的发言,教师把板书“巴依老爷的休息日、账房先生的休息日、他们八月份的共同休息日”相应地改写成“4的倍数、6的倍数、4和6的倍数”。

  师:“4和6的倍数”还可以怎么说?(4和6的公倍数)“公”是什么意思?(你有我也有、共有)数据“12”是什么?(4和6的最小公倍数)

  你还有其他的表示方式吗?(集合圈的图示方式)

  谁能说说什么是公倍数?什么是最小公倍数?教师板书课题。

  2、加深学生对公倍数和最小公倍数现实意义的理解。

  现在我们再来帮助小朋友解决问题。教师出示图,一些小朋友在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。”请大家猜猜这些学生可能有几人?

  细细体会班长说的话,你知道了什么?学生独立思考,解决。全班交流想法,要求总人数就是求6和8的公倍数。

  引导学生介绍用“大数翻倍法”等,简化步骤,不断改进方法。注意学生用省略号表示不同的可能性。

  师:如果这些学生的总人数在50以内,那么他们最多有几人?我们所求出的“48人”是6和8的最大公倍数吗?为什么?为什么不用学习求最大公倍数呢?(因为每一个数的倍数的个数都是无限的,两个数的公倍数的个数也是无限的。因此,两个数没有最大的公倍数。)

  3、归纳求最小公倍数的方法。

  师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)

  4、看书22--23页内容,你还有什么问题?

  师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?

  教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。

  三、解决问题,深化理解

  1、互质数和倍数关系的数的最小公倍数

  师出示书第90页的“做一做”,让学生独立解决,填写在书上。

  观察一下这里的每一组中的'两个数有什么关系?

  它们的最小公倍数与这两个数有什么关系?

  (提示:3和5这两个数有什么关系?3和5的公倍数有哪些?最小公倍数是几?15与3、5这两个数有什么关系?)

  提问:根据刚才的分析,你有没有发现什么规律?

  (当两数成倍数关系时,较大的数就是它们的最小公倍数。当两数只有公因数1时,这两个数的积就是它们的最小公倍数。)

  2、打电话游戏。

  师:梁老师家的电话号码是一个七位数,从高位到低位依次是:

  (1)2和8的最小公倍数

  (2)最小的质数

  (3)既是6的倍数又是6的因数

  (4)5和15的最大公因数

  (5)既是偶数又是质数

  (6)比所有自然数的公因数多7的数

  (7)2和3的最小公倍数。你能说说老师家的电话吗?

  师:你是怎样知道的?

  师:你们分析得多好啊!真了不起!

  四、课堂小结

  今天你学到了什么?收获最大的是什么?你有什么学习经验介绍给大家?

  五、作业

  运用这单元学习的知识,也给你的朋友编一个谜语,让他们猜猜你们家的电话号码。

  倍的初步认识的练习教案设计 篇10

  教学目标:

  理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。

  教学重点:

  最小公倍数的概念。

  教学难点:

  两个数最小公倍数的算理。

  教法:新授、小组合作、自主探究

  学法:练习、自学、小组合作

  课前准备:

  课件

  教学过程:

  一、定向导学(3分钟)

  (一)复习

  1、什么是最大公因数?

  2、最大公因数与两个数的质因数之间有什么关系?

  3、怎样求两个数的最大公约数?

  (二)出示目标

  理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。

  二、自主学习(6分钟)

  自学内容:68-69页内容

  自学方法:先独立看书,思考问题,再小组交流老师提出的问题(先从4号、3号开始回答,组长负责组织,提问,副组长负责记录,以及和老师的交流。)

  自学思考:

  1、什么是公倍数?最小公倍数?并背诵。

  2、如何求两个数的最小公倍数?

  3、两个数的公倍数和他们的最小公倍数之间有什么关系?

  4、两个数有没有最大的公倍数?为什么?

  三、合作交流(15分钟)

  1、最小公倍数的概念。

  (1)学生先独立思考。

  (2)再合作讨论自己是如何做的。

  (3)全班交流。

  2、小结:6,12,18,… 是 3 和 2 公有的倍数,叫做它们的公倍数。其中,6 是最小的公倍数,叫做它们的最小公倍数。

  3、举例说明:求 6 和 8 的最小公倍数。

  (1)学生独立完成,全班交流。

  (2)学生的方法有:

  ①列举法:先找倍数,再找公倍数,最后找出最小公倍数。

  例如:6 的倍数:6,12,18,24,30,36,42,48,…

  8 的倍数:8,16,24,32,40,48,…

  6 和 8 公倍数:24,48,…

  6 和 8 的最小公倍数:24

  ②大数翻倍法:8,16,24,…

  6 和 8 的最小公倍数:24

  ③分解质因数法:

  8=2×2×2 6=2×3

  8 和 6 的最小公倍数包括 8 和 6 的公有质因数和各自独有的'质因数。

  ④画图法。

  4、用喜欢的方法求 12 和 15 的最小公倍数。

  学生汇报。

  5、用分解质因数法求 18 和 8 的最小公倍数。

  四、质疑探究(4分)

  求下面每组数的最小公倍数,看看有什么发现?

  4 和 5 13 和 7 48 和 16 17 和 85

  小结:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,大数是两数的最小公倍数。

  五、小结检测(6分钟)

  (一)小结:谈谈你本节课的收获?

  (二)检测:

  1、求下面每组数的最小公倍数。

  [15,9] [18,24] [18,27] [14,21]

  [32,40] [25,45] [26,39] [54,63]

  2、下面的说法对吗? 说一说你的理由。

  (1)两个数的最小公倍数一定比这两个数都大。

  (2)两个数的积一定是这两个数的公倍数。

  六、堂清(6分钟)

  找出下列每组数的最小公倍数。你发现了什么?

  3和6 2和8 5和6 4和9 3和 9 5和10

  倍的初步认识的练习教案设计 篇11

  教学目标:

  1、学生掌握找一个数的因数,倍数的方法;

  2、学生能了解一个数的因数是有限的,倍数是无限的;

  3、能熟练地找一个数的因数和倍数;

  4、培养学生的观察能力。

  教学重点:

  掌握找一个数的因数和倍数的方法。

  教学难点:

  能熟练地找一个数的因数和倍数。

  教学过程:

  一、引入新课。

  1、出示主题图,让学生各列一道乘法算式。

  2、师:看你能不能读懂下面的算式?

  出示:因为26=12

  所以2是12的因数,6也是12的因数;

  12是2的倍数,12也是6的倍数。

  3、师:你能不能用同样的方法说说另一道算式?

  (指名生说一说)

  师:你有没有明白因数和倍数的关系了?

  那你还能找出12的其他因数吗?

  4、你能不能写一个算式来考考同桌?学生写算式。

  师:谁来出一个算式考考全班同学?

  5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)

  齐读p12的注意。

  二、新授

  (一)找因数

  1、出示例1:18的因数有哪几个?

  从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

  学生尝试完成:汇报

  (18的因数有: 1,2,3,6,9,18)

  师:说说看你是怎么找的?(生:用整除的方法,181=18,182=9,183=6,184=;用乘法一对一对找,如118=18,29=18)

  师:18的因数中,最小的是几?最大的是几?我们在写的'时候一般都是从小到大排列的。

  2、用这样的方法,请你再找一找36的因数有那些?

  汇报36的因数有: 1,2,3,4,6,9,12,18,36

  师:你是怎么找的?

  举错例(1,2,3,4,6,6,9,12,18,36)

  师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  仔细看看,36的因数中,最小的是几,最大的是几?

  看来,任何一个数的因数,最小的一定是( ),而最大的一定是( )。

【倍的初步认识的练习教案设计】相关文章:

倍的初步认识教案01-27

倍的初步认识(教案)04-25

一年级数学教案:《“倍”的初步认识的练习》06-05

小数的初步认识教案设计12-31

《倍的认识》优秀教案设计(通用6篇)05-14

小数的初步认识教案设计 3篇12-31

《角的初步认识》教案设计(精选10篇)01-06

倍的认识教案01-01

倍的认识教案03-14