五年级下册数学教案通用15篇
作为一名默默奉献的教育工作者,通常会被要求编写教案,教案是备课向课堂教学转化的关节点。那要怎么写好教案呢?以下是小编收集整理的五年级下册数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

五年级下册数学教案1
教学目标:
1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。
3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。
教学重点:
探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:
自主探索,归纳概括分数的基本性质。
教具学具准备:
多媒体课件,正方形纸,彩笔。
教学设计:
一、创设情境,导入新课:
1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。
2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。
3.学生初步感知了什么变了而什么却没有变的概念。
4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的.图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。
二、探究新知。
(一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:
被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。
3.教师引导说出商不变的性质,课件出示商不变的性质的定义。
设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。
(二)、教学新知。
1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。
2.学生操作,教师巡视并特别提醒学生注意“平均分”。
3.展示学生的作业。
4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。
5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。
6.引导学生观察:
观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:
教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。
设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。
7.课件出示:(通知互相讨论)
(1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。
8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。
9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。
10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)
师:分数的基本性质和商不变性质的规律是一致的。
三、巩固强化,拓展应用。
(1)课件出示:(集体回答)。
(2)指出下列分数是否相等。(指名回答)。
(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。
(4)课件出示小故事。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)
设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。
四、回顾总结,梳理新知。
同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。
教学反思:
1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。
2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。
五年级下册数学教案2
教学目标:
1、通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。
2、欣赏美丽的对称图形,并能自身设计图案。
3、同学感受图形的美,进而培养同学的空间想象能力和审美意识。
重点难点:
1、能利用对称、平移、旋转等方法绘制精美的图案。
2、感受图形的内在美,培养同学的审美情趣。
教学准备:幻灯片、课件。
教学过程:
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让同学尽情发表自身的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的'?
2、上面哪幅图是对称的?先让同学边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、 交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、安排作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1 图案2
图案3 图案4
对称、平移和旋转知识有广泛的应用。
五年级下册数学教案3
【教学目标】
1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2、知道100以内的质数,熟悉20以内的质数。
3、培养学生自主探索、独立思考、合作交流的能力。
4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
【重点难点】
质数、合数的意义。
教学过程:
【复习导入】
1、什么叫因数?
2、自然数分几类?(奇数和偶数)
教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。
【新课讲授】
1、学习质数、合数的概念。
(1)写出1 ~20各数的因数。(学生动手完成)
点四位学生上黑板写,教师注意指导。
(2)根据写出的'因数的个数进行分类。
(3)教学质数和合数概念。
针对表格提问:什么数只有两个因数,这两个因数一定是什么数?
教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。
如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)
2、教学质数和合数的判断。
判断下列各数中哪些是质数,哪些是合数。
17 22 29 35 37 87 93 96
教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)
质数:17 29 37
合数:22 35 87 93 96
3、出示课本第14页例题1。
找出100以内的质数,做一个质数表。
(1)提问:如何很快地制作一张100以内的质数表?
(2)汇报:
①根据质数的概念逐个判断。
②用筛选法排除。
③注意1既不是质数,也不是合数。
五年级下册数学教案4
信息社会已经到来,信息的获取、分析处理将成为现代人最基本的能力和素质的标志。本课正是基于这一理念,选择具有丰富现实背景的学习材料,学生了解了折线统计图的特点、作用后,在应用部分设置了分析数据、处理信息的练习题,以培养学生根据数据、图像分析事物并作出合理推断的能力。
1、了解折线统计图的特点和作用,初步学会折线统计图的绘制方法。
2、能分析折线统计图,培养学生利用数据、图像分析、判断、预测问题结果或趋势的能力。
3、让学生体验折线统计图在实际生活中应用的广泛性和重要性,培养正确的数学观,并通过相互交流、讨论,培养合作交流的能力。
一、引入:
1、出示:条形统计图
(1)某电影院上月各类影片观众人数统计图
(2)新芽书苑20xx年3月第一星期故事书销售情况统计图
2、提问:你已知道了条形统计图的哪些知识?
3、现实生活中还有另一种统计图,你见过吗?出示:折线统计图。
(1) 上虞电影院20xx年(1~6)月观众人数统计图。
(2) 百官镇一农户96~20xx年人均收入统计图。
二、展开:
(一)折线统计图的`特点和作用。
1、四人小组讨论;条形统计图和折线统计图有什么相同点和不同点?
(1) 学生自由讨论交流。
(2) 这两类统计图最大的区别是什么?
2、结合条形统计图的特点,归纳折线统计图的特点。
3、从折线统计图上我们能看出数量的多少吗?还能了解到什么?
4、结合课本进一步深入了解折线统计图的特点和作用。
(二)折线统计图的绘制。
1、你认为哪幅条形统计图用折线统计图来绘制更合适?
2、小组讨论:把这幅条形统计图绘制成折线统计图你有什么办法?
A、小组讨论 B、汇报 C、提问:绘制的关键是什么?
3、学生尝试绘制。
(1) 出示“我们的调查资料”。
(2) 想一想,哪几组数据用折线统计图绘制比较合适?
(3) 请选择其中一组数据绘制。
(4)小组交流绘制情况,分析增减变化的情况,并 推断发展趋势。
(5)大组交流绘制情况,并纠错。
三、应用
1、出示:李X(住院)的体温变化情况统计图,提问:看图后,你能推断出什么?
2、出示:百官镇一农户96~20xx年人均收入统计图。
思考:A、看图后你有什么感受?
B、你能提出哪些数学问题?
3、对比练习:
(1)出示:“吉祥鞋店20xx年凉鞋、棉鞋销售情况统计图”。
思考:A、两种鞋的销售趋势分别怎样?
B、你有什么建议?
(3) 出示:两家游泳衣专卖店的销售情况统计图。
思考:A、比较这幅图,说说哪一幅比较符合我们的生活实际?
B、猜猜为什么乐乐专卖店会有这样的销售现象
四、总结
你又有什么新收获?你是用什么方法学会的?
五、课外作业
省略
五年级下册数学教案5
教学内容:观察物体
教学目标:
1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。
2.培养学生从不同角度观察,分析事物的能力。
3.培养学生构建简单的空间想象力。
重点:帮助学生构建初步的空间想象力。
难点:帮助学生构建初步的.空间想象力。
教学过程:
一、谜语导入
请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)
二、合作探究
(一)整体观察
1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:
你观察到的正方体是什么样的?
在你的位置上观察,你看到了哪几个面?
2.学生汇报交流。
学生自由走动,观察。汇报交流。
3.解释应用
教师出示两个正方体的立体图,一个有虚线,另一个没有。
提问:谁能用刚学到的知识解释一下正方体为什么这样画?
学生解释说明。
(二)分别从三个面进行观察(出示例1)
1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。
学生离开座位自由观察。
2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。
总结学生的发言:从不同的方向观察,所看到的形状是不一样的。
三、拓展应用
1.做教科书例2
2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。
学生玩游戏,教师指导。
四、总结
本节课你学会了什么?
五、作业布置
兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。
1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。
2.从一个面看到物体的形状,可以有多种不同的摆放方式。
3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。
五年级下册数学教案6
教学内容:
义务教育课程标准实验教科书《数学》(新世纪版)五年级下册第六单元第82-83页《包装的学问》。
教材分析:
本课教学内容是在学生掌握了长方体特征及表面积计算等相关知识的基础上,进一步探究几个相同长方体组合成新长方体的多种方案以及使其表面积最小的最优策略。教材把《数学与购物》这一系列数学实践活动安排在第六单元后,主要意图是通过这样一系列与生活紧密联系的实践活动,培养学生综合应用所学的知识解决实际问题的能力。在这一系列实践活动中,教材安排了三个内容,主要涉及数与代数、空间与几何两部分知识,在解决生活实际问题的过程中,分别培养了学生的估算意识、计算中的.最优策略以及多个长方体叠放后使其表面积最小的最优策略。本课教学内容是这一系列实践活动中的最后一个内容。
包装问题在日常生活与生产中经常遇到,教材创设包装的情境,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它不仅培养学生的节约意识,更体现了数学的优化思想。有助于培养学生空间观念,提高解决实际问题的能力,感受数学与实际生活的密切联系。同时有利于学生感悟数学思想,积累数学活动经验。
学情分析:
1、学生已有的知识基础。
在本课学习之前,学生已熟练掌握了长方体、正方体的特征,能准确、迅速地计算出单一物体的棱长、表面积、体积,能把几个相同的正方体组合成新的正方体。初步接触了由两个相同的正方体拼成一个长方体后表面积发生的变化。在第二单元探索活动《露在外面的面》中,又训练了学生有序的观察能力和计算露在外面的面 面积的能力。
2、学生已有的生活经验。
学生大都接触过物品的包装,能清楚地意识到用包装纸包装起来的部分就是求物体的表面积。
3、学生学习本课内容可能遇到的困难及学习方式的研究。
学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方案的多样化与策略的最优化可能存在问题,通过动手操作大多数学生可以得到由4个相同长方体组合成新的长方体时的六种拼摆方案,但思维可能会无序,对于方法的归纳和总结也存在困难。因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同归纳总结,有助于培养学生思维的有序性。
五年级下册数学教案7
教学目标
1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。
2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。
3.进一步提高学生的统计技能,增强学生的统计意识。
教学重难点
教学重点:认识众数,理解众数的意义及作用。
教学难点:众数和中位数平均数的相互区别,在具体情境中如何选择恰当的统计量表示一组数据的一般水平。
教学过程
(一)复习旧知
1、回忆平均数及中位数的求法,指生回答。
2、求下列这组数据的平均数和中位数。生独立完成后课件出示。
(二)完成例1
1.出示例题:
五(2)班要选10名同学组队参加集体舞比赛.下面是20名候选队员的身高情况.(单位:米)
1.32 1.33 1.44 1.45 1.46 1.46 1.47 1.47 1.48 1.48 1.49 1.50 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52
师:提出集体舞的要求:身高接近,跳出的舞才更整齐。你认为参赛队员的身高是多少比较合适?
2.学生小组合作选择10名队员。
3.根据学生汇报,师课件随机演示选择结果。
平均数= (1.32+1.33+1.44+1.45+1.46+1.46+1.47+1.47
+1.48+1.48+1.49+1.50+1.51+1.52+1.52+1.52
+1.52+1.52+1.52+1.52)÷20
=29.5÷20
=1.475
中位数=(1.48+1.49)÷2
=2.97÷2
=1.485
接近1.485m的同学人数太少,不适合大多数同学的
身高。最高的与最矮的相差6cm。
这组数据的中位数是1.485,身高接近1.485m的比较合适。
身高是1.52m的人最多,1.52m左右的比较合适。最高的与最矮的相差3cm。
1 . 52出现的次数最多,最能应这组同学的身高情况.
4.小结:以众数1.52为标准选择队员身高会比较均匀。
师:(小结)集体舞一般要求队员身高差不多,这组数据中1.52出现的次数最多,所以1.52是这组数据的众数。所以以众数1.52为标准选出来的队员身高会很均称,组成的.舞蹈队形也会很整齐很美观!
5.师生共同归纳众数概念。
师揭示众数的概念
一组数据中出现次数最多的数据,是这组数据的众数。众数能够反映一组数据的集中情况。
6、做一做,
7、小练习:
学校举办英语百词听写竞赛,五(1)班和五(2)班参赛选手的成绩如下:
求这次英语百词听写竞赛中学生得分的众数.
三个数据存在的数量和意义:
比较三个统计量:
(三)学习众数的特征
师出示练习题:
1、五(1)班21名男生1分钟仰卧起坐成绩如下(单位:次):
19 23 26 29 28 32 34 35 41 33 31
25 27 31 36 37 24 31 29 26 30
(1)这组数据的中位数和众数各是多少?
(2)如果成绩在31~37为良好,有多少人的成绩在良好及良好以上?
2、一个射击队要从两名运动员中选拔一名参加比赛。在选拔赛上两人各打了10发子弹,成绩如下:
甲:9.5 10 9.3 9.5 9.6 9.5 9.4 9.5 9.2 9.5
乙:10 9 10 8.3 9.8 9.5 10 9.8 8.7 9.9
(1)甲、乙成绩的平均数、众数分别是多少?
(2)你认为谁去参加比赛更合适?为什么?
生先独立思考,再全班交流。
师:在找三组数据的众数的过程中,你发现了什么?
生:在一组数据中,众数可能不止一个,也可能没有众数。
师小结:在一组数据中,众数有一个,也有多个,甚至没有。同时众数也反应了一组数据的集中情况。
2、三个数据存在的数量和意义
(四)综合练习
你去商场买过衣服吗?你知道休闲类服装型号的“均码”是什么意思吗?均码一般是根据人的平均身高、胸围等数据确定的统一商品型号,与多数人的型号接近。所以,均码里蕴涵着平均数和众数的原理。
(五)联系情境,应用众数
销售衣服问题。
师:小明很喜欢做社会调查。他到一家服装店调查后,给我们带来了这样的一则信息:服装店销售了20件T恤,尺寸如下:(单位:cm) 42 39 38 40 41 41 42 39 40 41 41 41 41 40 41 40 41 40 40 41
师:从表格中,你发现了什么?如果你是这家服装店的经理,你会怎样进货?
生:讨论交流,发表自己想法。
师:(小结)从中可以看出,在衣服的尺码组成的一组数据中,41cm是这组数据的众数,也就是41cm衣服销售量最大。所以,可以多进一些41cm的衣服。商品的销售里面也要用到众数的知识,由此看来,生活中还真少不了众数啊!
(五)拓展延伸(“生活中的数学”)均码问题。
师:同学们去商场买过衣服吗?如果你去买过会发现,商场里很多休闲的服饰,它的型号都是均码的。我们一起来看一下。
师:课后请同学们调查和了解一下:什么是“均码”?
(六)全课小结
教师:同学们,今天我们上了这节课你收获了什么?
五年级下册数学教案8
【教学目标】
1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。
2.引导学生学会判断一个数能否被3整除。
3.培养学生分析、判断、概括的能力。
【重点难点】
理解并掌握3的倍数的特征。
【复习导入】
1.学生口述2的倍数的特征,5的倍数的特征。
2.练习:下面哪些数是2的倍数?哪些数是5的倍数?
324 153 345 2460 986 756
教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。
板书课题:3的倍数的特征。
【新课讲授】
1.猜一猜:3的倍数有什么特征?
2.算一算:先找出10个3的倍数。
3×1=3 3×2=6 3×3=9
3×4=12 3×5=15 3×6=18
3×7=21 3×8=24 3×9=27
3×10=30……
观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)
提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)
12→21 15→51 18→81 24→42 27→72
教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?
(以四人为一小组、分组讨论,然后汇报)
汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。
3.验证:下面各数,哪些数是3的倍数呢?
210 54 216 129 9231 9876
小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的`倍数。(板书)
4.比一比(一组笔算,另一组用规律计算)。
判断下面的数是不是3的倍数。
3402 5003 1272 2967
5.“做一做”,指导学生完成教材第10页“做一做”。
(1)下列数中3的倍数有。
14 35 45 100 332 876 74 88
①要求学生说出是怎样判断的。
②3的倍数有什么特征?
(2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)
②接着再考虑什么?(最小三位数是100)
③最后考虑又是3的倍数。(120)
【课堂作业】
完成教材第11~12页练习三的第4、6、7、8、9、10、11题。
【课堂小结】
同学们,通过今天的学习活动,你有什么收获和感想?
【课后作业】
完成练习册中本课时练习。
3的倍数的特征
一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。
教学3的倍数的特征时,教师要注意学生的自主探索过程,通过猜一猜、算一算、想一想、验一验、比一比等教学环节,循序渐进地让学生参与到学习中来,但教师在想一想这个环节中要进行适当点拨、引导,这样效果更明显。
五年级下册数学教案9
教学内容:
长方体、正方体的体积计算
教学目标:
1.通过讲授,引导学生找出规律,总结出体积的公式。
2.指导学生运用公式正确计算长方体、正方体的体积。
3.培养学生积极思考、探索新知的思维品质。
教学重点:
长方体、正方体体积计算。
教学难点:
长方体、正方体体积计算
教具运用:
正方体木块若干。
教学过程:
一、复习导入
1.什么叫体积?计量物体的体积常用的单位有哪些?
2.怎样计算一个物体的体积呢?
二、新课讲授
1.长方体体积的计算。
教师课件出示一块长方体积木,一块盖房用的大型砖板。
(1)提问:它们的'体积是多少?你是怎样想的?
引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。
教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。
(2)观察操作,探究长方体的体积公式。
小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。
学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。
说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?
学生独立思考,然后小组内讨论交流,得出结论。
小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。
板书:长方体的体积=长宽高
讲述:如果用字母V表示长方体的体积公式可以写成:V=abh
(3)质疑:求长方体的体积公式需要知道什么条件?
2.探究正方体的体积公式。
(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。
(2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)
3.运用长方体的体积公式解决问题。
(1)出示教材第30页的例1。
(2)学生看图,理解题意。
(3)说出题中所给信息,和所求问题。
(4)指名说出长方体的体积公式。
(5)指名学生上台板演过程,其他同学判断。
(6)老师订正书写。V=abh=743=84(cm3)
(7)看图,学生独立在练习本上完成。
(8)指名板演,集体订正。
三、课堂作业
完成课本第31页做一做第1、2题。
四、课堂小结
1.这节课,你有什么收获?
2.在计算长方体和正方体的体积时,要注意哪些问题?
五、课后作业
完成练习册中本课时练习。
板书设计 :
长方体和正方体的体积
长方体的体积=长宽高
V=abh
正方体体积=棱长棱长棱长
V=aaa=a3
五年级下册数学教案10
【教学内容】
质数和合数(课本第14页例1及第16页练习四1~3题)。
【教学目标】
1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2.知道100以内的质数,熟悉20以内的质数。
3.培养学生自主探索、独立思考、合作交流的能力。
4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
【教学重难点】
重点:理解质数、合数的意义。
难点:掌握判断质数与合数的方法。
【教学过程】
一、复习导入
1.什么叫因数?
2.自然数分几类?(奇数和偶数)
教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。
二、新课讲授
1.学习质数、合数的概念。
(1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。
(2)根据写出的因数的个数进行分类。(填写下表)
(3)教学质数和合数的概念。
针对表格提问:什么数只有两个因数,这两个因数一定是什么数?
教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)
2.教学质数和合数的.判断。
判断下列各数中哪些是质数,哪些是合数。
17 22 29 35 37 87 93 96
教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)
质数:17 29 37
合数:22 35 87 93 96
3.出示课本第14页例题1。
找出100以内的质数,做一个质数表。
(1)提问:如何很快地制作一张100以内的质数表?
(2)汇报:
①根据质数的概念逐个判断。
②用筛选法排除。首先排除掉2的倍数,再排除掉3 的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。
③注意1既不是质数,也不是合数。
100以内质数表
三、课堂作业
完成教材第16页练习四的第1~3题。
四、课堂小结
这节课,同学们又学到了什么新的本领?
学生畅谈所得。
【板书设计】
质数和合数
一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。
【教学反思】
教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。
五年级下册数学教案11
课题:
列方程解应用题复习(行程问题)
学情分析:
相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。
教学目标(课时目标):
1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;
2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程
3、逐步掌握画线段图分析题目的方法。
教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。
教学难点:认识相遇的过程中理解运用等量关系的解决问题。
教学准备:PPT、练习本
教学过程:
教学活动教学说明
一、复习引入
1、揭题
2、常见的相遇问题类型(手势演示)
(1)同时出发,相向而行
(2)一车先行,另一车再行,相向而行
(3)同时出发,途中一车暂停,相向而行
二、基础练习
1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?
(1)画线段图分析题意
(2)找出等量关系
(3)列式
2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。
小结:(1)相加=总路程
(2)相差=路程差
3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?
小结:(3)到中点相等
4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。
小结:(4)总路程相等
三、巩固提升
5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?
6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?
7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?
8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。
四、思维训练
9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。
五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。
“相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。
通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。
板书设计:列方程解应用题(行程)
相遇问题(1)相加=总路程
(2)相差=路程差
(3)到中点相等
(4)总路程相等
教学反思:
行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:
1、合理组织安排教材,激发学生主动参与教学
首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。
追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的`特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。
2、运用线段图进行教学,培养学生的分析、观察能力
学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。
3、为学生提供充分的思考、分析的空间
在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。
4、分层递进,满足不同层次需求
在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。
总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。
五年级下册数学教案12
教学目标
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。
2、通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。
3、培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。
重点难点
重点:初步学会准确判断一个数是质数还是合数。
难点:区分奇数、质数、偶数、合数。
教具学具
投影仪。
教学过程
一、创设情境,激趣导入
师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?
师:密码是一个三位数,它既是一个偶数,又是5的倍数;位上的数是9的因数;十位上的数是最小的质数。你能打开密码锁吗?
学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。
二、探究体验,经历过程
1、认识质数与合数。
师:找因数——找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?
学生分组进行,找出之后进行分类。
生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。
师:很好,我们可以把它们分类,大家把分类结果填在表中。
投影展示学生的分类结果。
【设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】
师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。
师:再举出几个质数和合数的`例子,举得完吗?说明了什么?(质数和合数都有无数个)
想一想:最小的质数(合数)是几?的呢?
师:所以按照因数个数的多少,自然数又可以分为哪几类呢?
课件出示:可以把非0自然数分为质数和合数以及1,共三类。
2、制作质数表。
投影出示例1。
师:怎样找出100以内的质数呢?
生1:可以把每个数都验证一下,看哪些是质数。
生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……
【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】
三、课末总结,梳理提升
这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。
五年级下册数学教案13
教学内容:
教材第xx页的内容及第xx页练习的第x题。
教学目标:
1.理解两个数的公倍数和最小公倍数的意义。
2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。
3.培养学生抽象、概括的能力。
教学重点:
理解两个数的公倍数和最小公倍数的.意义。
教学难点:
自主探索并总结找最小公倍数的方法。
教学具准备:
多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。
教学方法:
小组合作谈话法。
教学过程:
一、创设情景,生成问题:
前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。
二、探索交流,解决问题
1.在数轴上标出4、6的倍数所在的点
拿出老师课前发的画有两条直线的纸。
在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。
2.引入公倍数
(1)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。
(2)观察:从4和6的倍数中你发现了什么?
(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。
(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)
说说看,什么叫两个数的公倍数?
3.用集合图表示
如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。
4.引人最小公倍数
学生汇报后问:
(1)为什么三个部分里都要添上省略号?
(2)4和6的公倍数还有哪些?有没有最大公倍数?
(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)
4的倍数6的倍数
4,8,
16,20,
12,24,
4和6的公倍数:
五年级下册数学教案14
教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生
动手操作的能力和抽象,概括,归纳的能力.
教学重点:分数的数感培养,以及与除法的联系.
教学难点:抽象思维的培养.
教学过程:
一,铺垫复习,导入新知 [课件1]
1,提问:A,7/8是什么数 它表示什么
B,7÷8是什么运算 它又表示什么
C,你发现7/8和7÷8之间有联系吗
2,揭示课题.
述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".
板书课题:分数与除法的关系
二,探索新知,发展智能
1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少
提问:A,试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=0.333……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就
是1/3米.
B,这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)
板书: 1÷3= 1/3
C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来
表示 也就是说整数除法的商也可以用谁来表示
2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]
(1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式
B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢
板书: 3÷4= 3/4
(2)操作检验(分组进行)
① 把3个同样大小的.圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
② 反馈分法.
提问:A,请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)
B,比较这两种分法,哪种简便些
※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.
3,小结提问:A,观察上面的学习,你获得了哪些知识
板书: 被除数 ÷ 除数 = 除数 / 被除数
B,你能举几个用分数表示整数除法的商的例子吗
C,能不能用一个含有字母算式来表示所有的例子
板书: a÷b=b/a (b≠0)
D,b为什么不能等于0
4, 看书P91 深化.
反馈:说一说分数和除法之间和什么联系 又有什么区别
板书:分数是一个数,除法是一种运算.
三,巩固练习 [课件5]
1,用分数表示下面各式的商.
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2,口算.
7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )
3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.
四,全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.
在整数除法中零不能作除数,那么,分数的分母也不能是零.
五,家作
P93 .1,2,3
板书设计: 分数与除法的关系
例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4
被除数 ÷ 除数 = 除数 / 被除数
a÷b=b/a (b≠0)
分数是一个数,除法是一种运算
五年级下册数学教案15
一、学情分析:
《质数和合数》这一课内容比较抽象,很难结合生活实例或具体情境来教学,学生理解起来有一定的难度。另外,到本节课为止,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数,合数和偶数的概念弄混,教学时应注意让学生辨析这些概念。
二、教学目标:
1、理解质数和合数的概念。
2、能熟练判断质数与合数,能够找出100以内的质数。
3、培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
三、教学重难点:
重点:理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。
难点:能运用一定的方法,从不同的角度判断、感悟质数合数。
四、教学过程:
(一)导入新课。找出1~20各数的因数。
你发现了什么?
(学生可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本身;……)
今天我们学习的内容就与一个数因数的个数有关。
[设计意图说明:让学生用自己的话描述1~20各数因数的`特点,通过观察学生虽然没有质数与合数的概念,但对这些数已经有了自己的分类与认识,为之后的分类与概念的学习打下基础。]
(二)新授
探究一:认识质数和合数
师:请同学们按照因数的个数,将这些数分分类。
(学生可能回答:将1,2,3,5,7,11,13,17,19分为一类,它们的因数都是1和它自己本身,其余的数分为一类;将1,4,9,16分为一类,它们的因数个数都是奇数个,其余的分为一类,它们的因数个数都是偶数个;……)
师:同学们都说得非常好,请打开课本翻到第14页,请你按照它的方法分一分。
师:一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。上面这些数中,哪些数是质数(素数)?为什么?
(学生可能回答:2是质数,它的因数只有1和2;3是质数,它的因数只有1和3;2,3,5,7,11,13,17,19都是质数,它们的因数都只有1和它们本身;……。)
师:1是质数吗?
(学生回答:1是质数,它的因数只有1和它本身;1不是质数,1的因数只有1个,质数有2个因数;……)
师:一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。上面这些数中,哪些数是合数?为什么?
(学生可能回答:4是合数,除了1和4以外,2也是4的因数;6是合数,除了1和6以外,6的因数还有2和3;……)
师:1是合数吗?
(学生可能回答:1不是合数,它只有1个因数1。)
小结:1不是质数,也不是合数。
师:你还能找出其他的质数和合数吗?
(学生举例并说明理由)
[设计意图说明:质数和合数的定义可以教师直接给出,也可以让学生自己看书自学,这里的重点是要让学生理解定义,根据定义判断一个数(除了1)是质数还是合数。学生在一开始可能会将1归为质数,这时要提醒学生仔细理解定义中“两个因数”的含义。在小结和板书中也要强调,1不是质数,也不是合数。]
探究二:找出100以内的质数,做一个质数表。(课本P14例1。)
(媒体出示图表)
师:你有什么好方法?
(学生回答:先把偶数去掉,它们除了1和本身外,一定还有因数2(教师提示2是质数,不能去掉);除了5以外,个位是5,0的数先去掉;……)
师:利用我们之前学习到的知识,可以先将2,3,5的倍数划掉(不包括2,3,5)。一直可以划到几的倍数?
(学生可能回答:50的倍数,51的2倍是102,超过100了。)
(学生制作100以内的质数表。)
[设计意图说明:由于小学用到的质数比较少,所以教材中只要求学生找出100以内的质数。这些质数不必要求学生都背熟,但是熟悉20以内的质数还是有必要的。]
五、练习
(课本P16∕练习四第一、二题。)
六、小结:
1、一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。
2、一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。
3、1不是质数,也不是合数。
【五年级下册数学教案】相关文章:
五年级下册数学教案04-04
五年级下册人教版数学教案01-12
小学五年级下册数学教案01-03
人教版五年级下册数学教案01-09
五年级下册数学教案【热】02-08
五年级下册数学教案【热门】02-13
【精】五年级下册数学教案02-02
五年级下册数学教案15篇01-04
五年级下册数学教案(15篇)01-04
五年级下册数学教案(精选20篇)06-30