七年级数学教案
作为一位优秀的人民教师,总不可避免地需要编写教案,教案是备课向课堂教学转化的关节点。我们该怎么去写教案呢?下面是小编精心整理的七年级数学教案,欢迎阅读,希望大家能够喜欢。

七年级数学教案1
一、素质教育目标
(一)知识教学点
1.理解有理数乘方的意义.
2.掌握有理数乘方的运算.
(二)能力训练点
1.培养学生观察、分析、比较、归纳、概括的能力.
2.渗透转化思想.
(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.
(四)美育渗透点
把记成,显示了乘方符号的简洁美.
二、学法引导
1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.
2.学生学法:探索的性质→练习巩固
三、重点、难点、疑点及解决办法
1.重点:运算.
2.难点:运算的符号法则.
3.疑点:①乘方和幂的区别.
②与的区别.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片.
六、师生互动活动设计
教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.
七、教学步骤
(一)创设情境,导入 新课
师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?
生:可以记作,读作的四次方.
师:呢?
生:可以记作,读作的五次方.
师:(为正整数)呢?
生:可以记作,读作的次方.
师:很好!把个相乘,记作,既简单又明确.
【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.
师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.
生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.
非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).
【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.
(二)探索新知,讲授新课
1.求个相同因数的积的运算,叫做乘方.
乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.
巩固练习(出示投影1)
(1)在中,底数是__________,指数是___________,读作__________或读作___________;
(2)在中,-2是__________,4是__________,读作__________或读作__________;
(3)在中,底数是_________,指数是__________,读作__________;
(4)5,底数是___________,指数是_____________.
【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的.计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.
师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?
学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.
生:到目前为止,已经学习过五种运算,它们是:
运算:加、减、乘、除、乘方;
运算结果:和、差、积、商、幂;
教师对学生的回答给予评价并鼓励.
【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.
师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.
学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.
【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.
2.练习:(出示投影2)
计算:1.(1)2, (2), (3), (4).
2.(1),,,.
(2)-2,,.
3.(1)0, (2), (3), (4).
学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.
师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?
先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.
生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.
师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?
学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.
生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.
师:请同学思考一个问题,任何一个数的偶次幂是什么数?
生:任何一个数的偶次幂是非负数.
师:你能把上述结论用数学符号表示吗?
生:(1)当时,(为正整数);
(2)当
(3)当时,(为正整数);
(4)(为正整数);
(为正整数);
(为正整数,为有理数).
【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.
七年级数学教案2
一、知识结构
二、 重点、难点分析
本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。
1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即
其中,可以表示一个数、一个字母,也可以是一个代数式.
2.利用法则进行单项式和多项式运算时要注意:
(1)多项式每一项都包括前面的符号,例如中的多项式,共有两项,就是.运用法则计算时,一定要强调积的符号.
(2)单项式必须和多项式中的每一项相乘,不能漏乘多项式中的任何一项.因此,单项式与多项式相乘的结果是一个多项式,其项数与因式中多项式的项数相同.
(3)对于混合运算,要注意运算顺序,同时要注意:运算结果如有同类项要合并,从而得出最简结果.
3根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的符号;
4非零单项式乘以不含同类项的多项式,乘积仍然是多项式;积的项数与所乘多项式的项数相等;
5对于含有乘方、乘法、加减法的混合运算的题目,要注意运算顺序;也要注意合并同类项,得出最简结果.
三、教法建议
1.单项式与多项式相乘的基本依据是乘法分配律,故在本课开始先讲述乘法分配律,由有理数过渡到字母.
2.由乘法分配律过渡到单项乘多项式的法则时,也可以采用以下代换的方法,如计算:(-4x 2 )·(2x 2 +3x-1).
设m=-4x 2,a=2x 2,b=3x,c=-1,
∴ (-4x 2 )·(2x 2 +3x-1)
=m(a+b+c)
=ma+mb+mc
=(-4x 2 )·2x 2 +(-4x 2 )·3x+(-4x 2 )·(-1)
=-8x 4 -12x 3 +4x 2.
这样过渡较自然,同时也渗透了一些代换的思想.
3.单项式与多项式相乘,积仍是多项式,它的项数与多项式的项数相同.这是单项式与多项式相乘的结果,这个结果也是我们掌握法则的关键.一般说来,对于一个运算法则的掌握应从分析结果开始,分析结果的结构,分析结果与各算式的关系,这样才能较好地掌握法则.
教学设计示例
一、教学目标
1.理解和掌握单项式与多项式乘法法则及推导.
2.熟练运用法则进行单项式与多项式的乘法计算.
3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.
4.通过反馈练习,培养学生计算能力和综合运用知识的能力.
5.渗透公式恒等变形的数学美.
二、学法引导
1.教学方法:讲授法、练习法.
2.学生学法:学习单项式与多项式相乘的运算法则是运用了“转化”的数学思想方法,利用分配律把单项式乘以多项式问题转化为前面学过的单项式与单项式相乘;最后再合并同
类项,故在学习中应充分利用这种方法去解题.
三、重点·难点·疑点及解决办法
(一)重点
单项式与多项式乘法法则及其应用.
(二)难点
单项式与多项式相乘时结果的符号的确定.
(三)解决办法
复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项
式乘单项式后符号确定的问题.
四、课时安排
一课时.
五、教具学具准备
投影仪、胶片.
六、师生互动活动设计
1.设计一道可运用乘法分配律进行简便运算的题目,让学生复习乘法分配律,并为引入单项式与多项式的乘法法则打下良好的基础.
2.通过面积分割法,形象直观地引入单项式与多项式的乘法法则,并引导学生用文字语言概括出其结论.
3.通过举例,教师分析、讲解并示范板书全过程,让学生规范解题过程,再通过反复的练习巩固所学过的法则.
七、教学步骤
(一)明确目标
本节课重点学习单项式与多项式的乘法法则及其应用.
(二)整体感知
单项式乘以多项式的乘法运算主要是将它转化为单项式与单项式的乘法运算,放首先应适当复习并掌握单项式与单项式的乘法运算方法,再在计算过程中注意单项式与多项式相乘后的符号问题.
(三)教学过程
1.复习导入
复习:
(1)叙述单项式乘法法则.
(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)
(2)什么叫多项式?说出多项式的项和各项系数.
2.探索新知,讲授新课
简便计算:
引申:计算,基中m、a、b、c都是单项式,因为式中字母都表示数,故分配律对代数式也适用,则
引导学生用学过的.长方形面积知识加以验证,把宽为m,长分别是a、b、c的三个小长方形拼成大长方形,研究图形面积的整体与部分关系.
由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式
与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.
例1计算:
说明:计算按课本,讲解时,要紧扣法则:①用单项式遍乘多项式的各项,不要漏乘.②要注意符号,多项式的每一项包括它前面的符号.③“把所得积相加”时,不要忘了加上加号.
例2化简:
化简按课本,化街时直接写成省略加号的代数和,注意正确表达,做完乘法后,要合并同类项.
练习:错例辨析
(2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为
(四)总结、扩展
1.由学生叙述单项式与多项式相乘法则,并回答积仍是多项式,积的项数与多项式因式的项数相同.
2.考点剖析:单项式乘以多项式这一知识点在中考试卷中都是以与其他知识综合命题的形式考查的.但它是多项式乘法、因式分解、分式通分、解分式方程等知识的重要基础.故必须掌握好.如
(99,河北)下列运算中,不正确的为()
A.B.
C.D.
八、布置作业
参考答案:
略
七年级数学教案3
第一章 一元一次不等式组
1.1 一元一次不等式组
第1教案
教学目标
1. 能结合实例,了解一元一次不等式组的相关概念。
2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
3. 提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点
1..不等式组的`解集的概念。
2.根据实际问题列不等式组。
教学方法
探索方法,合作交流。
教学过程
一、 引入课题:
1. 估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。
2. 由许多问题受到多种条件的限制引入本章。
二、 探索新知:
自主探索、解决第2页“动脑筋”中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、 抽象:
教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)
七年级数学教案4
一、教材分析
1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时
2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用
3、教学的重点、难点:
重点:邻补角、对顶角的概念,对顶角的性质和应用。
难点:理解对顶角性质的探索
(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)
4、教学目标:
A:知识与技能目标
(1).理解对顶角和邻补角的概念,能在图形中辨认.
(2).掌握对顶角相等的性质和它的推证过程
(3).会用对顶角的性质进行有关的简单推理和计算.
B:过程与方法目标
(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。
(2).体会具体到抽象再到具体的.思想方法.
C:情感、态度与价值目标
(1).感受图形中和谐美、对称美.
(2).感受合作交流带来的成功感,树立自信心.
(3).感受数学应用的广泛性,使学生更加热爱数学
二、学情分析:
在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.
三、教法和学法:
教法:
叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.
学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.
四、教学过程:
1课前准备:课件,剪刀,纸片,相交线模型
2教学过程:设置以下六个环节
环节一:情景屋(创设情景,激发学习动机)
请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线
环节二:问题苑(合作交流,解释发现)
通过一些问题的设置,激发学生探究的欲望,具体操作:
(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化
(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。
(让学生充分的感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)
(3):分析研究此模型:
设置以下一系列问题:
A、两直线相交构成的4个角两两相配共能组成几对?(6对)
B、对各对角进行分析,首先从位置上去分析————结论:可把这六对角分成两大类,一类为哪些角?——特点?——它们有一条公共边,它们的另一边互为反向延长线——引出概念——邻补角。
另一类是哪些角?———特点?——它们的两边互为反向延长线——引出概念——对顶角
C、再从大小上进行分析——量一量——结论:邻补角互补、对顶角相等。
D、你能阐述它们互补和相等的理由吗?
(一堂好课,是由一系列的真问题组成的,本环节在老师的引导下,由学生自由的发挥,通过观察分析,交流讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)
环节三:快乐房(大胆创设,感悟变换)
(设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)
环节四:实例库(拓展应用,升华提高)
例子1:是一组不同形式的角,判断是否为对顶角,此题的目的是巩固对顶角的概念,培养学生的识图能力
例子2:例子2是用对顶角和邻补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力
(一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象会更深刻).
最后安排一个脑筋急转弯:见投影
(让学生始终对课堂充满热情,通过此练习,体会到数学来自于生活又用于生活,提高学习数学的兴趣和热情)
环节五:点金帚(学后反思感悟收获)
通过本堂课的探究
我经历了......
我体会到......
我感受到......
(学生畅所欲言,在“以生为本”的民主氛围中培养学生归纳、概括能力和语言表达能力;同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人,同时把本节课的内容形成知识体系.)
角的名称
特征
性质
相同点
不同点
对顶角
①两条直线相交而成的角
②有一个公共顶点
③没有公共边
对顶角相等
都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。
对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个角的对顶角有一个,而一个角的邻补角有两个
邻补角
①两条直线相交面成的角
②有一个公共顶点
③有一条公共边
邻补角互补
环节六:沉思阁(课后延伸张扬个性)
此为课后作业:
(适当增加利用对顶角相等解决一些说理的题目,既让学生感受到对顶角相等这个性质在解题中的独特魅力,又为后续学习打下良好的基础.)
五、教学设计说明:
设计理念:面向全体学生,实现:
——人人学有价值的数学
——人人都能获得必需的数学
——不同的人在数学上得到不同的发展
过程设计:学生亲身经历从现实生活的图形中提出数学问题,并抽象其蕴涵的数学本质(相交直线),最后回归生活去运用所学知识的全过程。
设计目的:让学生带着兴趣、带着问题走进课堂,带着新的问题、带着高涨的热情离开课堂,进行不断的探究。
七年级数学教案5
一、素质教育目标
(一)知识教学点
1、掌握的三要素,能正确画出。
2、能将已知数在上表示出来,能说出上已知点所表示的数。
(二)能力训练点
1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。
2、对学生渗透数形结合的思想方法。
(三)德育渗透点
使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。
(四)美育渗透点
通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
二、学法引导
1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。
2、学生学法:动手画,动脑概括的三要素,动手、动脑做练习。
三、重点、难点、疑点及解决办法
1、重点:正确掌握画法和用上的点表示有理数。
2、难点:有理数和上的点的对应关系。
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片。
六、师生互动活动设计
师生同步画,学生概括三要素,师出示投影,生动手动脑练习
七、教学步骤
(一)创设情境,引入新课
师:大家知识温度计的用途是什么?
生:温度计可以测量温度
(出示投影1)
三个温度计。其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。
师:三个温度计所表示的温度是多少?
生:2℃,—5℃,0℃。
我们能否用类似温度计的图形表示有理数呢?
这种表示数的图形就是今天我们要学的内容—(板书课题)。
【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—。再从温度计这个实物形象抽象出来研究。既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识。
(二)探索新知,讲授新课
1、的画法
与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:
第一步:画直线定原点原点表示0(相当于温度计上的0℃)。
第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向。(相当于温度计上℃以上为正,0℃以下为负)。
第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度)。
【教法说明】教师边讲解边示范,学生跟着一起画图。培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法。
让学生观察画好的直线,思考以下问题:
(出示投影1)
(1)原点表示什么数?
(2)原点右方表示什么数?原点左方表示什么数?
(3)表示+2的点在什么位置?表示—1的点在什么位置?
(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?
根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义。
学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答。大家思考准备更正或补充。
【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力。
教师根据学生回答给予肯定或否定,纠正后板书。
2、的定义:规定了原点、正方向和单位长度的直线叫做。
向学生提出问题:上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是的依据。
学生活动:同桌之间、前后桌之间讨论。使学生从直观认识上升到理性认识。
3、尝试反馈,巩固练习
请大家回答下列问题:
(出示投影2)
(1)有人说一条直线是一条,对不对?为什么?
(2)下列所画对不对?如果不对,指出错在哪里?
学生活动:学生思考,不准讨论,想好后举手回答。
让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解。
【教法说明】此组练习的目的是巩固的概念。
答案:(2)①缺原点,②缺正方向,③不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量。⑤⑦是,同时⑦为学习平面直角坐标系打基础。
4、有理数与上点的关系
通过刚才的学习我们知道所有的有理数都可以用上的点来表示。
例1画一条,并画出表示下列各数的点:
1,5,0,—2.5。
学生练习:同学们在练习本上画一条,然后在上标出各点,一名学生板演。教师巡回指导,发现问题及时纠正。
【教法说明】让学生动手自己画,有助于培养学生实际操作能力。例1是把给定的有理数用上的点来表示,完成由“数”到“形”的'思维过程,有助于学生加深对概念的理解。
(出示投影4)
例2指出上A、B、C、D、E各点分别表示什么数?
先让学生思考一会,然后学生举手回答
解:A表示—3;B表示;C表示3;D表示;E表。
【教法说明】例2是让学生说出上的点表示的有理数,完成了由“形”到“数”的思维过程。例1、例2从各自不同的两个侧面,体现出数形结合,渗透了数形之间相互转化的数学思想。
5、尝试反馈,巩固练习
(出示投影5)
①说出下面上A、B、C、D、O、M各点表示什么数?
②将—3,1.5,—6,2.25,—5,1
各数用上的点表示出来。
【教法说明】①题由点读数练习,②题由数找点练习,进一步巩固加深本节所学的内容。
(三)归纳小结
师:①是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法。本章有理数的有关性质和运算都是结合进行的
②掌握三要素,正确地画出,提醒同学们,所有的有理数都可用上的各点来表示,但是反过来不成立,即上的各点,并不是都表示有理数。以后再研究。
八、随堂练习
1、判断题
(1)直线就是()
(2)是直线()
(3)任何一个有理数都可以用上的点来表示()
(4)上到原点距离等于3的点所表示的数是+3()
(5)上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0。()
2、画一条数轮,并画出表示下列各数的点,—5,0,+3.2,—1.4
九、布置作业
(—)必做题:课本第56页1、2。
(二)选做题:课本第56页及第57页B组1。
(三)思考题:
①在数轮上距原点3个单位长度的点表示的数是_____________
②在数轮上表示—6的点在原点的___________侧,距离原点___________个单位长度,表示+6的点在原点的__________侧,距离原点____________个单位长度。
【教法说明】由于学生在知识、技能、能力方面发展不尽相同,所以分层次地布置作业,兼顾学习有困难和学有余力的学生,使他们都能达到大纲中规定的基本要求,并使部分学生能发展他们的数学才能。
十、板书设计
随堂练习答案
1、× √ √ × √ 2、略
作业答案
(一)必做题
1、(1)依次是
(2)依次是
2、依次是
(二)选做题:
3、略B组1、(1)—6,(2)—1,(3)3;(4)0
(三)思考题:① ②左,6,右,6
探究活动
(1)在上表示出距离原点3个单位长度和4.5个单位长度的点,并用“<”号将这些点所表示的数排列起来;
(2)写出比—4大但不大于2的所有整数。
分析:画时,的三要素:原点、正方向、单位长度缺一不可。
(1)在上,距离原点3个单位长度和4.5个单位长度的点各有两个,它们分别在原点两旁且关于原点对称。画出这些点,这些点所表示的数的大小就排列出来了;
(2)在上画出大于—4但不大于2的数的范围,这个范围内整数点所表示的整数就是所求。“不大于2”的意思是小于或等于2。
解:(1)上,距离原点3个单位的点是+3和—3,距离原点4.5个单位的点是+4.5和—4.5。
由图看出:—4.5<—3<3<4.5
(2)在上画出大于—4但不大于2的数的范围。
由图知,大于—4但不大于2的整数是:—3,—2,—1,0,1,2。
点评:利用,数形结合,是解这一类问题的好方法。
七年级数学教案6
[教学目标]
1.使学生了解多边形的内角、外角等概念.
2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.
[教学重点、难点]
1.重点:
(1)多边形的内角和公式.
(2)多 边形的外角和公式.
2.难点:多边形的内角和定理的推导.
[教学过程]
一、探究
1.我们知道三角形的内角和为180°.
2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.
3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?
画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.
从中你得到什么结论?
同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.
二、思考几个问题
1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?
2.从五边形一个顶点出发可以引几条对角线?它们将 五边形分成几个三角形?那么这五边形的内角和为多少度?
3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?
综上所述,你能得到多边形内角和公式吗?
设多边形的边数为n,则
n边形的内角和等于(n一2)180°.
想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?
由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)
分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.
如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°.
分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去.
∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°
用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.
三、例题
例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?
已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.
分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.
解:如图,四边形ABCD中,∠A+∠C=180°。
∵∠A+∠B+∠C+∠D=(4-2)×360°=180°,∴∠B+∠D= 360°-(∠A+∠C)=180°
这就是说:如果四边形一组对角互补,那么另一组对角也互补.
例2 如图,在六边 形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?
已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角.
求:∠1+∠2+∠3+∠4+∠5+∠6的值.
分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×1 80°.由于六边形的内角和为(6—2)×180°=720°.
这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360° .
解:∵六边形的任何一个外角加上它相邻的内角和为180°.
∴六边形的六个外角加上各自相邻内角的总和为6×180°.
由于六边形的内角和为(6—2)×180°=720°
∴它的外角和为 6×180°一720°=360°
如果把六边形横成n边形.(n为不小于3的正整数)
同样也可以得到 其外角和等于360°.即
多边形的外角和等于360°.
所以我们说多边形的外角和与它的边数无关.
对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°.
如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.
四、课堂练习
课本P89练习1、2、3题.
P90第2、3题
五、课堂小结
引导学生总结本节课主要内容.
六、课后作业
课本P90第4、5、6题.
备选题:
一、判断题.
1.当多边形边数增加时,它的`内角和也随着增加.( )
2.当多边形边数增加时.它的外角和也随着增加.( )
3.三角形的外角和与一多边形的外角和相等.( )
4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.( )
5.四边形的四个内角至少有一个角不小于直角.( )
二、填空题.
1.一个多边形的每一个外角都等于30°,则这个多边形为 边形.
2.一个多边形的每个内角都等于135°,则这个多边形为 边形.
3.内角和等于外角和的多边形是 边形.
4.内角和为1440°的多边形是 .
5.一个多边形的内角的度数从小到大排列时,恰好依次增加相同的度数,其中最小角为100°,最大的是140°,那么这个多边形是 边形.
6.若多边形内角和等于外角和的3倍,则这个多边形是 边形.
7.五边形的对 角线有 条,它们内角和为 .
8.一个多边形的内角和为4320°,则它的边数为 .
9.多边形每个内角都相等,内角和为720°,则它的每一个外角为 .
10.四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠D= .
11.四边形的四个内角中,直角最多有 个,钝角最多有 个, 锐角最多有 个.
12.如果一个多边形的边数增加一条,那么这个多边形的内角和增加 ,外角和增加 .
三、选择题.
1.多边形的每个外角与它相邻内角的关系是( )
A.互为余角 B.互为邻补角 C.两个角相等 D.外角大于内角
2.若n边形每个内角都等于150°,那么这个n边形是( )
A.九边形 B.十边形 C.十一边形 D.十二边形
3.一个多边形的内角和为720°,那么这个多边形的对角线条数为( )
A.6条 B.7条 C.8条 D.9条
4.随着多边形的边数n的增加,它的外角和( )
A.增 加 B.减小 C.不变 D.不定
5.若多边形的外角和等于内角和的号,它的边数是( )
A.3 B.4 C.5 D.7
6.一个多边形的内角和是1800°,那么这个多边形是( )
A.五边形 B.八边形 C.十边形 D.十二边形
7.一个多边形每个内角为108°,则这个多边形( )
A.四边形 B,五边形 C.六边形 D.七边形
8,一个多边形每个外角都是60°,这个多边形的外角和为( )
A.180° B.360° C.720° D.1080°
9.n边形的n个内角中锐角最多有( )个.
A.1个 B.2个 C.3个 D.4个
10.多边形的内角和为它的外角和的4倍,这个多边形是( )
A.八边形 B.九边形 C.十边形 D,十一边形
四、解答题.
1.一个多边形少一个内角的度数和为2300°.
(1)求它的边数; (2)求少的那个内角的度数.
2.一个八边形每一个顶点可以引几条对角线?它共 有多少条对角线?n边形呢?
3.已知多边形的内角和为其外角和的5倍,求这个多边形的边数.
4. 若一个多边形每个外角都等于它相邻的内角的 ,求这个多 边形的边数.
5.多边形的一个内角的外角与其余内角的和为600°,求这个多边形的边数.
6.n边形的内角和与外角和互比为13:2,求n.
7.五边形ABCDE的各内角都相等,且AE=DE,AD∥CB吗?
8.将五边形砍去一个角,得到的是怎样的图形?
9.四边形ABCD中,∠A+∠B=210°,∠C =4∠D.求:∠C或∠D的度数.
10.在四边形ABCD中,AB=AC=AD,∠DAC=2∠BAC.
求证:∠DBC=2∠BDC.
七年级数学教案7
一、知识结构
二、重点、难点分析
本节教学的重点是幂的乘方与积的乘方法则的理解与掌握,难点是法则的灵活运用、
1、幂的乘方
幂的乘方,底数不变,指数相乘,即(都是正整数)
幂的乘方
的推导是根据乘方的意义和同底数幂的乘法性质、
幂的乘方不能和同底数幂的乘法相混淆,例如不能把的结果错误地写成,也不能把的计算结果写成、
幂的乘方是变乘方为(底数不变,指数相乘的)乘法,如;而同底数幂的乘法是变(同底数的幂)乘为(幂指数)加,如
2、积和乘方
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘、即(为正整数)
三个或三个以上的积的乘方,也具有这一性质、例如:
3、不要把幂的乘方性质与同底数幂的乘法性质混淆、幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变)
4、同底数幂的乘法、幂的乘方、积的乘方的三个运算性质是整式乘法的基础,也是整式乘法的主要依据、对三个性质的数学表达式和语言表述,不仅要记住,更重要的是理解、在这三个幂的运算中,要防止符号错误:例如,;还要防止运算性质发生混淆:等等、
三、教法建议
1、幂的乘方导出的根据是乘方的意义和同底数幂的乘法性质、教学时,也要注意导出这一性质的过程、可先以具体指数为例,明确幕的乘方的意义,导出性质,如
对于从指数连加得到指数相乘,要根据学生情况多作一些说明、以xx为例,再一次说明
可以写成、这一点是导出幂的乘方性质的关键,务必使学生真正理解、在此基础上再导出性质、
2、使学生要严格区分同底数幂乘法性质与幂的'乘方性质的不同,不能混淆、具体讲解可从下面两点来说明:
(1)牢记不同的运算要使用不同的性质,运算的意义决定了运算的性质、
(2)记清幂的运算与指数运算的关系:
(同底)幂相乘→指数相加(“乘”变“加”,降一级运算);
幂乘方→指数相乘(“乘方”变“乘法”,降一级运算)、
了解到有关幂的两个重要性质都有“使原运算仅降一级运算”的规律,可使自己更好掌握有关性质.
3、在教学的各个环节中,注意启发学生,不仅掌握法则,还要明确为什么、三种运算法则全讲完之后,学生最易产生法则间的混淆,为了解决这个问题除叫学生熟记法则之外,在学生回答问题和写作业时,注意解题步骤,或及时发现问题,说明出现问题的原因;要注意防止两个错误:
(1)(-2xy) 4 =-2 4 x 4 y 4
(2)(x+y) 3 =x 3 +y 3
七年级数学教案8
教学目标
1、掌握绝对值的概念,有理数大小比较法则。
2、学会绝对值的计算,会比较两个或多个有理数的大小。
3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。
教学难点两个负数大小的比较
知识重点绝对值的概念
教学过程(师生活动)设计理念
设置情境
引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反
意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。
学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20|—10|=10显然|0|=0这个例子中,第一问是相反意义的量,用正负
数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。并使学生体
验数学知识与生活实际的联系。
因为绝对值概念的几何意义是数形转化的典型
模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。
合作交流
探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对
有什么规律?、
—3,5,0,+58,0.6
要求小组讨论,合作学习。
教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页)。
巩固练习:教科书第15页练习。
其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概
念的一个应用,所以安排此例。
学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。
结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:
把14个气温从低到高排列;
把这14个数用数轴上的点表示出来;
观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的`关系,由此你觉得两个有理数可以比较大小吗?
应怎样比较两个数的大小呢?
学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序:
在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。
在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则
想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。
要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性
数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。
课堂练习例2,比较下列各数的大小(教科书第17页例)
比较大小的过程要紧扣法则进行,注意书写格式
练习:第18页练习
小结与作业
课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?
本课作业1,必做题:教产书第19页习题1,2,第4,5,6,10
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在
这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学
习绝对值概念的必要性和激发学习的兴趣。②教材中数的绝对值概念是根据几何意
义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理
数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。
2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3,有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学
中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到
大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型。为此设置了想象练习。
4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教
学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。
七年级数学教案9
教学目的
1、了解一元一次方程的概念。
2、掌握含有括号的一元一次方程的解法。
重点、难点
1、重点:解含有括号的一元一次方程的解法。
2、难点:括号前面是负号时,去括号时忘记变号。
教学过程
一、复习提问
1、解下列方程:
(1)5x—2=8(2)5+2x=4x
2、去括号法则是什么?“移项”要注意什么?
二、新授
一元一次方程的概念。
如44x+64=328 3+x=(45+x)y—5=2y+1问:它们有什么共同特征?
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程。
例1、判断下列哪些是一元一次方程
x= 3x—2 x—=—1
5x2—3x+1=0 2x+y=1—3y =5
例2、解方程(1)—2(x—1)=4
(2)3(x—2)+1=x—(2x—1)
强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“—”号,注意去掉括号,要改变括号内的每一项的符号。
补充:解方程3x—[3(x+1)—(1+4)]=1
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
三、巩固练习
教科书第9页,练习,1、2、3。
四、小结
学习了一元一次方程的`概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。
五、作业
1、教科书第12页习题6。
2、第1题。
七年级数学教案10
一、教学目标
1、理解一个数平方根和算术平方根的意义;
2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3通、过本节的训练,提高学生的逻辑思维能力;
4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合。
四、教学手段
多媒体
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的下面作一个小练习,填空:
1、( )2=9;
2、( )2 =0.25;
3、( )2=0.0081。
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0.25的平方根;
0的平方根是0;
±0.09是0.0081的平方根。
由此我们看到3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=—4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的`平方为非负数。由此我们可以得到结论,负数是没有平方根的下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1、一个正数有两个平方根,它们互为相反数。
2、0有一个平方根,它是0本身。
3、负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到3与—3的平方是9,9的平方根是3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:
1、用正确的符号表示下列各数的平方根:
①26
②247
③0.2
④3
⑤
解:①26的平方根是
②247的平方根是
③0.2的平方根是
④3的平方根是
⑤的平方根是
七年级数学教案11
教学目标
1.使学生理解的意义;
2.使学生掌握求一个已知数的;
3.培养学生的观察、归纳与概括的能力.
教学重点和难点
重点:理解的意义,理解的代数定义与几何定义的一致性.
难点:多重符号的化简.
课堂教学过程 设计
一、从学生原有的认知结构提出问题
二、师生共同研究的定义
特点?
引导学生回答:符号不同,一正一负;数字相同.
像这样,只有符号不同的两个数,我们说它们互为,如+5与
应点有什么特点?
引导学生回答:分别在原点的两侧;到原点的距离相等.
这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.
3.0的是0.
这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.
三、运用举例 变式练习
例1 (1)分别写出9与-7的;
例1由学生完成.
在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?
引导学生观察例1,自己得出结论:
数a的是-a,即在一个数前面加上一个负号即是它的
1.当a=7时,-a=-7,7的是-7;
2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.
3.当a=0时,-a=-0,0的是0,因此,-0=0.
么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;
例2 简化-(+3),-(-4),+(-6),+(+5)的符号.
能自己总结出简化符号的规律吗?
括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.
课堂练习
1.填空:
(1)+1.3的是______; (2)-3的'是______;
(5)-(+4)是______的; (6)-(-7)是______的
2.简化下列各数的符号:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列两对数中,哪些是相等的数?哪对互为?
-(-8)与+(-8);-(+8)与+(-8).
四、小结
指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.
五、作业
1.分别写出下列各数的:
2.在数轴上标出2,-4.5,0各数与它们的
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化简下列各数:
5.填空:
(1)如果a=-13,那么-a=______;(2)如果a=-5.4,那么-a=______;
(3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.
课堂教学设计说明
教学过程 是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.
探究活动
有理数a、b在数轴上的位置如图:
将a,-a,b,-b,1,-1用“<”号排列出来.
分析:由图看出,a>1,-1
解:在数轴上画出表示-a、-b的点:
由图看出:-a<-1
点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.
七年级数学教案12
学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。
3、电脑演示:
如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。
由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。
四、做一做(实践)
1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。
2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。
五、试一试(探索)
课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。
教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体
1、以正四面体为例,说出它的顶点数、棱数和面数。
2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。
3、(延伸):若随意做一个多面体,看看是否还是那个结果。
学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的'师生关系。
六、小结,布置课后作业:
1、用六根火柴:①最多可以拼出几个边长相等的三角形?②最多可以拼出如图所示的三角形几个?
2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。
让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。
七年级数学教案13
一、目标
1.用它们拼成各种形状不同的四边形,并计算它们的周长。
(鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)
2.教师揭示以上这些工作实际上是在进行整式的加减运算
3.回顾以上过程 思考:整式的加减运算要进行哪些工作?
生1:“去括号”
生2:“合并同类项”
师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用,
二、揭示如何进行整式的加减运算
1.进行整式的.加减运算时,如果有括号先去括号,再合并同类项。
2.教学例二 例2 求2a2-4a+1与-3a2+2a-5的差.
(本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)
解:(2a2-4a+1)-(-3a2+2a-5)
=2a2-4a+1+3a2-2a+5
=5a2-6a+6
3.拓展练习
(1)求多项式2x -3 +7与6x -5 -2的和.
提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)
(2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)
(4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)
4.教学例3
先化简下式,再求值:
(做此类题目应先与学生一起探讨一般步骤:
(1)去括号。
(2)合并同类项。
(3)代值)
解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3
=15a2b –5ab2+4ab2 -12a2b)
=3a2b –ab2
三、小结
1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。
2.进行化简求值计算时
(1)去括号。
(2)合并同类项。
(3)代值
3.通过本节课的学习你还有哪些疑问?
四、布置作业
习题4.5 2. (3) ;4. (2);5.。
五、课后反思
省略
七年级数学教案14
教学:
1、使学生经历画垂线的过程,正确掌握画垂线的方法。
2、通过动手操作活动,学会用三角板准确的画垂线,会验证两条直线是否互相垂直。培养学作图能力。
3、活学活用,用画垂线的方法来画图形。
4、培养学生良好的观察能力、作图能力和应用意识。
教学重难点:
1、使学生明确垂线的重要性质,并通过这一性质学会画垂线
2、明确不同情况下的垂线画,用画垂线的方法画长方形。
教学准备:课件、三角板、直尺、量角器等
教学过程:
一、复习巩固积累运用
1、学习新课之前,让我们回忆一下上节课学过的知识。
生:我们学习了平行和垂直。请两名分别具体的说一说。
生1:在同一平面内……。生2:两条直线相交成直角,……
(预设:回答问题的同学说的不完整,不严密,可以找同学补充、纠正)
2、再次复习巩固垂直的概念
3、动手操作
画两条互相垂直的直线
师:想一想该画,用什么工具画?
生:用三角板上的直角画,用直尺上的直角画,用量角器上的90度直角画
(预设,可能学生还会说,我用两个三角板拼成一个直角来画等等,只要是合理就要给予肯定)
师生:同学们在自己的练习纸上画,找几名同学来
(预设:找几个有性的画法来展示)
师:评价并引出本节课所重点知识:画垂线(板书课题:画垂线)
二、创设情境生成问题
有一条直线l,他有一个好点a,他们每天形影不离。
1、过直线上的一点a做已知直线l的垂线
生:思考后尝试画
师:找若干名同学来讲述他们的画法。
生:把三角板的一条直角边与这条直线重合,三角板直角的顶点与直线上一点重合,沿另一条直角边画一条直线,这条直线就是已知直线的垂线,他们相交的交点就是垂足,画上垂直符号。
(预设:一名同学板眼,描述,其他同学认真听,如果有疑议货发现错误,可以来纠正、补充)
(重点强调:三角板的直角边,直角的顶点,与……重合,垂足等等这些关键的说法)
三、探索交流解决问题
一天直线l的好朋友点a出去旅行了,我们可以用画垂线的方式来帮助他们联系,谁来帮帮他们。
2、过直线外一点a画已知直线l的垂线
生:先尝试画
师:找两名同学来画
(预设:找两名同学用两种不同颜色的粉笔来画,之后询问学生发现了什么?引导学生说出:过直线外一点只能画一条已知直线的垂线。再思考:过直线上一点又是怎样的情况?)
生:汇报展示画法。
生:发现两条垂线重合在了一起。思考总结过直线外一点垂线的画法,再尝试总结过直线上一点垂线的画法,并说明原因。
(预设:可能会说出结论或原因,但也有可能说得不是很准确,很精简,可以给予一些提示、点拨)
师:做的总结,帮助学生加深印象。
四、一鼓作气乘胜追击
一天直线l和好朋友点a在吵架了,点a不见了
4、按要求做已知直线的.垂线
生:尝试画
生:汇报演示
师:观察画图,说明问题,如果没有点的限制,可以画几条已知直线的垂线?
(预设:无数条,因为直线式可以无限延伸的)
五、回顾整理提升
师:老师遇到了一个棘手的问题,需要大家来帮忙
画一个长5厘米,宽3厘米的长方形
已知:长方形的。
提示:长方形的特点是什么?相邻的两条边。
思考:可以用的方法来画长方形。
师:找一名同学读题,一名同学分析,同学们小组研讨。
生:汇报一下小组讨论的结果。
六、学有所得感知有趣
这节课,你有什么和?
七年级数学教案15
教学过程:
一、复习
1、一辆汽车行驶的速度不变,行驶的时间和路程。
2、一辆汽车从甲地开往乙地,行驶的时间和速度。
看上面的题,回答下面的问题:
(1)各有哪三种量?
(2)其中哪一种量是固定不变的?
(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?
3、这节课,我们就应用比例的知识解决一些实际问题。
二、新授
1、教学例5
(1)出示例5:张大妈家上个月用了8吨水,水费是2。8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?
(2)学生读题后,思考和讨论下面的问题:
①问题中有哪两种量?
②它们成什么比例关系?你是根据什么判断的?
③根据这样的比例关系,你能列出等式吗?
(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的`。
(4)根据正比例的意义列出方程:
解:设李奶奶家上个月的水费是χ元。
12。8/8=χ/10
8χ= 12。8×10
χ=128÷8
χ= 16答:李奶奶家上个月的水费是16元。
(5)将答案代入到比例式中进行检验。
2、修改题目:王大爷上个月的水费是19。2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)
3、教学例6
(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?
(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。
(3)指名板演,全班评讲。
4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。
三、巩固练习
1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。
2、完成练习九第5、6、7题。
四、总结
用比例知识解决问题的步骤是什么?
教学目标:
1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。
2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。
3、培养学生良好的解答应用题的习惯。
教学重点:
用比例知识解答比较容易的归一、归总应用题。
教学难点:
正分析题中的比例关系,列出方程。
【七年级数学教案】相关文章:
七年级数学教案01-18
七年级数学教案范文01-16
七年级下数学教案上册12-10
七年级上册数学教案05-06
初中七年级数学教案01-17
初中七年级数学教案范文01-13
人教版七年级下册数学教案10-09
初中七年级数学教案(推荐)02-08
(通用)初中七年级数学教案03-15
七年级数学教案:丰富的图形世界07-19