- 相关推荐
潜在因素模型在商业银行信用风险分析中的应用
在评估商业银行整体信用风险时,债务人的信息一般不会传递到风险管理部门,导致在缺少违约数据时传统方法的分析十分复杂甚至难以进行.基于贝叶斯方法的潜在因素模型可以有效解决无法获得特定债务人信用质量的问题,并能够在宏观经济环境变动时准确评估违约风险强度变化,从而避免低估风险.利用MCMC模拟方法对商业银行数据的实证分析表明,潜在因素模型不仅推断方法及模拟途径简洁清晰,估计结果更加精确,而且在贝叶斯框架下具有较强的灵活性,适合在不同的数据约束条件下应用,便于国内风险分析人员采用.

周丽莉,ZHOU Li-li(南昌大学经管学院,江西,南昌,330031;西南财经大学,统计学院,四川,成都,610074)
刊 名: 统计与信息论坛 CSSCI 英文刊名: STATISTICS & INFORMATION FORUM 年,卷(期): 2009 24(8) 分类号: O212 关键词: 信用风险 贝叶斯方法 潜在因素模型 MCMC模拟【潜在因素模型在商业银行信用风险分析中的应用】相关文章:
基于Logit模型与GA算法的商业银行信用风险评估模型研究04-25
路面质量影响因素分析-支持向量机模型04-26
外语学习中的情感因素分析04-26
数据包络分析(DEA)模型及其在绩效评价中的应用综述04-27
因次分析和模型试验在污水处理曝气中的应用04-25
在温室气体减排中应用的CGE模型04-25
纳米技术的潜在应用04-26
失活/存活模型在大肠杆菌0157:H7风险分析中的应用04-27
基于BP算法的信用风险评价模型研究04-27