基于主成分分析的最小二乘支持向量机岩性识别方法

时间:2023-05-01 13:18:51 天文地理论文 我要投稿
  • 相关推荐

基于主成分分析的最小二乘支持向量机岩性识别方法

测井解释过程中的岩性识别实质是多个指标数据的模式识别问题.常规测井解释方法很难表征储层的真实特性.提出一种基于主成分分析的最小二乘支持向量机的岩性识别预测模型(PCA-LSSVM).介绍了主成分分析法和最小二乘支持向量机原理.通过主成分分析方法对测井数据进行分析并提取影响岩性识别的主要因素,依据分析结果建立基于最小二乘支持向量分类机的岩性识别模型.云南陆良盆地3口井的117个地层的识别结果与实际取心资料的符合率达到92.5%.应用表明,将主成分分析结合最小(二)乘支持向量机进行岩性识别,简化了网络结构,具有更快的运算速度和准确率,是一种值得推广使用的方法.

作 者: 钟仪华 李榕   作者单位: 西南石油大学理学院,四川,成都,610500  刊 名: 测井技术  ISTIC PKU 英文刊名: WELL LOGGING TECHNOLOGY  年,卷(期): 2009 33(5)  分类号: P631.32  关键词: 测井解释   岩性识别   主成分分析   最小二乘支持向量机   累积方差  

【基于主成分分析的最小二乘支持向量机岩性识别方法】相关文章:

基于最小二乘支持向量机的航材备件需求建模04-30

基于最小二乘支持向量机的区域GPS高程转换组合04-30

基于最小二乘支持向量机的航空发动机故障远程诊断04-27

模糊最小二乘支持向量机在黑液波美度软测量中的应用04-26

基于支持向量机的红外成像跟踪算法04-27

一种基于支持向量机回归的推荐算法04-26

基于支持向量机的遥感蚀变信息提取04-29

基于支持向量机的中长期入库径流预报04-28

路面质量影响因素分析-支持向量机模型04-26

基于HMLP参数的二肽logP值支持向量机预测模型04-26