数学的小故事合集【15篇】
数学的小故事1
数学史家把0称作“哥伦布鸡蛋”,这不仅是因为0的形状像鸡蛋,其中还含有深刻的哲理。凡事都是开创时困难,有人开了端,仿效是很容易的。0的出现就是一个典型的例子,在发明之前,谁都想不到,一旦有了它,人人都会用简单的方法来记数。

我们知道,零不仅表示一无所有,它还有以下的一些意义;在位值制记数法中,零表示“空位”,同时起到指示数码所在位置的作用,如304中的0表示十位上没有数;零本身还是一个数,可以同其他的数一起参与运算;零是标度的起点或分界,如每天的时间从0时开始。
在古代巴比伦,楔形文字的`零号已起到现今位值制中0号的作用,它一方面表示零位,另一方面也指明数码的位置。然而他们还没有把零看作一个数,也没有将它和“一无所有”这一概念联系起来。
印度人对零的最大贡献是承认它是一个数,而不仅仅是空位或一无所有。婆罗摩笈多对零的运算有较完整的叙述:“负数减去零是负数,正数减去零是正数,零减去零什么也没有;零乘负数、正数或零都是零。……零除以零是空无一物,正数或负数除以零是一个以零为分母的分数”。每一个学过除法的人都知道,零不可以作除数,因为如果a≠0而b=0,那就不可能存在一个C使得bc=a。这个道理尽人皆知,但在得到正确结论之前,却经历了漫长的历史。
我国自古以来就用算筹来记数,早就用算筹来记数,用的是10进位值制。巴比伦知道位值制,但用的是60进制。印度到公元595年才在碑文上有明确的10进位值制的记数法。位值制必须有表示零的办法。起初,中国使用空格来表示零,后来以○表示零,后来印度的0就传入了中国。
在我们眼里,零的存在是那么自然、简洁,但就是这么一个简单的零,却也有这么一段颇不简单的历史。
数学的小故事2
金字塔是埃及的著名建筑,尤其胡夫金字塔最为著名,整个金字塔共用了230万块石头,10万奴隶花了30年的时间才建成这个建筑。金字塔建成后,国王又提出一个问题,金字塔倒底有多高,对这个问题谁也回答不上来。国王大怒,把回答不上来的学者们都扔进了尼罗河。当国王又要杀害一个学者崐的时候,著名学者塔利斯出现了,他喝令刽子手们住手。国王说:“难道你能知道金字塔的高度吗?”塔利斯说:“是的,陛下。”国王说:“那么它高多少?”塔利斯沉着地回答说:“147米。”
国王问:“你不要信口胡说,你是怎么测出来的?”塔利斯说:“我可以明天表演给你看。”第二天,天气晴朗,塔利斯只带了一根棍子来到金字塔下,国王冷笑着说:“你就想用这根破棍子骗我吗?你今天要是测不出来,那么你也将要被扔进尼罗河!”塔利斯不慌不忙地回答:“如果我测不出来,陛下再把我扔进尼罗河也为时不晚。”
接着,塔利斯便开始测量起来,最后,国王也不得不服他的'测量是有道理的。小朋友,你知道塔利斯是如何进行测量的吗?
数学的小故事3
首先,故事教学对于一年级学生来说有着特殊的意义。
6、7岁的儿童进入小学一年级,学习活动就逐渐取代游戏活动,而成为儿童的主要活动形式。这是儿童心理发展的一个重要转折时期,他们以具体思维为主要形式,正在向抽向思维过渡。所以,低年级的教师应该把握好幼小衔接的关连点,在有限的时间内把课上活,创设能引起学生求知欲、并有助于参与数学的、发展情感的教育情境,而创设故事情节的故事教学在低年级数学教学中起着重要的作用。
其次,故事教学的优势所在。
1、数学来源于生活。数学在生活中无处不在。《数学课程标准》中明确指出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设有趣的情境。”由此可见,教师可以通过故事的形式将生活与科学知识相联系,使全体学生在经验层面上达到共识。
2、吸引力。对于一年级的学生来说,课堂上的趣味不能少,而故事教学正好是一种趣味性很强的教学方式,以小故事贯穿课堂,气氛变得活泼。对于新知识的掌握有着事半功倍的作用。我在《同讲一堂课》时,讲授《图形与位置》,在课堂上用讲故事的形式,把大树爷爷需要同学们的帮助,让同学们在大树的上、下、左、右,贴上花、蘑菇、鸟、兔子,学生的积极性很高,掌握起新知——方位时也轻松、容易,且在故事中学会要帮助别人。在贴时,懂得了同学们要互相协作、团结。可以说,这种设计完全吸引了学生。
3、故事性、参与性。让故事中的主人公做孩子们的朋友,参与数学,这样学生就真正参与进教师的教学当中。真正领会学习数学的必要性。在学习《统计》这章时,我以讲故事的形式把“我们的鞋码”这样的关于统计的枯燥的数学问题形象化,学生的积极性调动起来了,课上生动了,新知识接受了,教师的教学目的达到了!
最后我要说的是故事教学是手段而不是目的,在选择故事时要与数学知识有关,不能单纯地为讲故事而讲故事,如果是那样的话,不如开个故事会得了。
综上所述,一年级处于幼小衔接的特殊时期,故事教学在数学课堂上有着独特的价值,只有把握住这些去研究、去设计,我们老师才能全面调动起儿童的积极性,让内因起作用,为向高年级过渡做好不仅是知识的衔接,更是学习兴趣、学习能力和学习习惯的衔接。
数学教学要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设各种有效情境,为学生提供学习数学活动的机会,激发学生对数学学习的兴趣以及学好数学的愿望。尤其是小学生,直观的`、具体的、形象的方式对他们更具吸引力,因此我在课堂教学中创设各种方式的情境,以此来吸引学生的学习兴趣,使他们更好地参与到数学学习中来。例如:我在教学《两位数乘两位数的乘法》这一课时。主要从以下几个方面着手的。
一、结合学生的生活实际,创设情境,创造性的使用教材。
记得第一节课刚开始的时候,刚走进教室就看到讲台上整齐的摆放新华书店补发的《课外阅读》书。便灵机一动,何不就利用这一现成的教学资源呢?就拿起其中一本,告诉大家这本书有74页,如果现在有12本这样的书,一共多少页呢?怎样列算式解答? 15本呢?20本呢?并指名学生板书。分别让学生列竖式解答。这样既让学生感受到数学来源于生活,又为生活服务的紧密联系,同时也激发了孩子们学习数学的兴趣。
二、运用自主探索、合作交流的学习方式。
由于学生前面已经会计算两位数乘一位数和整十数乘整十数,所以对于本单元的内容完全可以运用迁移学习方法,通过自己尝试计算,然后比较交流总结方法,充分发挥了学生的主体作用和自主学习能力的培养;我认为在课堂上,把问题交还给学生,激励学生在互动中解决问题。教学中能让学生自己说出自己归纳的知识内容,教师尽可能不说;能让学生做的教师绝对不包办;能让学生自己发现找出合理答案的教师给与肯定。只有在不规范不准确的地方教师才可以作补充说明,教师不必要将自己的结论强加给学生。这样做师生间的距离近了,感情增加了。而积极的情感又能提高学生的心理和生理的活动能量,从而提高思维和学习潜能。
三、题组训练,以旧带新,发现规律。
乘数末尾有0的乘法口算方法的教学,主要是利用题组,运用迁移的方法,总结出积的末尾的0的确定。让学生在比较中发现规律,并巩固简便的笔算方法。古人云:"亲其师,信其道"。要使学生亲师信道,必须改变过去"一言堂"的课堂环境,充分发挥学生潜能,使学生不再受束缚,使教学向民主化、人性化方面发展。
数学的小故事4
我在本村民办小学读二年级时,一天,老师心血来潮,拿出一支钢笔,高兴地对学生说:“谁能用188加上1等于200,谁第一个做对了,老师就将自己的这支钢笔奖给他(或她)。”
有学生问老师:“如果有学生做出来了,老师说话不算数咋办?”老师说;“只能加上1,等于200,只要是第一个加对了,这支笔就归他,老师保证说话算数。”
学生一下子来了兴趣,拿出笔来在草稿纸上演算起来,有人在百位上加上1,等于288,多了88,如果在十位上加上1,应该是198。少2,在个位上加上1,还差11,这时,有学生说:“老师骗人的,188加上1,不可能等于200的。”
老师笑着说:“你们好好地想想吧,这个奖说容易得,确实很容易的得的,说难实在是很难的,关键是要看你是怎么加的。”
我听了老师的.话,又认真地思考了一会儿,还是没有办法解决问题,生气地拿起笔将笔划掉188时,突然发现做对了这道题,高兴地说:“老师,我加出来了。”
我急急忙忙地离开座位将草稿纸拿给老师看,老师一看,高兴地笑着说:“老师真没有想到,在这个教室里坐的三四年级的学生都没有做出来,却被你这个入学不到一年的二年级的学生做出来了。怎么样?老师没有骗你们吧,这支笔就奖给你!”
这时,教室里像炸开锅似的,说什么的都有,就是不相信188加上1能等于200。我见自己将奖品拿到手了,于是拿起粉笔在黑板上写上188后说:“上下的100相加就是200嘛。”同学们一看,突然明白了。
这就是我意外得奖的经历,当时我拿到钢笔,疯疯癫癫地跑回座位,激动地流出了眼泪。
数学的小故事5
老师说:这孩子太牛,我教不了。
高斯是德国数学家、物理学家、天文学家、大地测量学家。高斯是近代数学的奠基人之一,有“数学王子”之称。大家可能知道的更多的故事是关于等差数列求和的。
有一天高斯的数学教师情绪低落的'一天。对同学们说:“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”结果不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”
老师头也不抬,说:“去,回去再算!错了。”高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”
数学老师本来想怒吼起来,可是一看石板上写了这样的数:5050,他惊奇起来,这个8岁的小鬼怎么这样快就得到了答案呢?
要知道那个年代,等差数列的求和是大学才学习的知识,而小高斯看上去有能力掌握这个数学技能。
于是,下课后老手向校长汇报:“对于高斯,我已经没什么可教的了。”
后来,老师为了不埋没高斯的数学天赋,经常托人去大城市汉堡买更先进的数学书给高斯看,还让自己的助理对这个普通家庭的孩子多加照顾。
数学的小故事6
在神奇的数学城堡中,胖子“0”跟瘦子“1”它们是两个“微有声望”的.数字,因此经常为了谁更重要在争吵。
看看!今天,这对死对头冤家路窄,又开始了一场剧烈地舌战。
瘦子“1”抢先说话:“哼!胖胖的‘0’,你有何了不起的?就跟100,若没我这个瘦子‘1’,你这两个胖‘0’有何用?”
胖子“0”不服气了:“你也甭在我面前耍威风,想想看,要是没有我,你上哪找其它数来组成100呢?”
“哟!”“1”不甘示弱,“你再神气也不过是表示什么也没有,看!‘1+0’还不等于我本身,
你哪点儿派得上用场啦?”
“去!‘1×0’结果也还不是我,你‘1’不也同样没用!”“0”针锋相对。
“你……”“1”顿了顿,随机应变道,“不管怎么说,你‘0’就是表示什么也没有!”
“这就是你见识少了。”“0”不慌不忙地说,“你看,日常生活中,气温0度,难道是没有温度吗?
再比如,直尺上没有我作为起点,哪有你‘1’呢?”
“再怎么比,你也只能做中间数或尾数,如1037、1307,永远不能领头。”“1”信心十足地说。
听了这话,“0”更显得理直气壮地说:“这可说不定了,如0.1,没有我这个‘0’来占位,你可怎么办?”
眼看着胖子“0”与瘦子“1”争得脸红耳赤,谁也不让谁,一旁观战的其他数字们都十分着急。这时,
“9”灵机一动,上前做了个暂停的手势:“你俩都别争了,瞧你们,‘1’、‘0’有哪个数比我大?”
“这……”胖子“0”、瘦子“1”哑口无言。这时,“9”才心平气和地说:“‘1’、‘0’,其实,
只要你们站在一块,不就比我大了吗?”“1”、“0”面面相觑,半晌才搔搔头笑了。“这才对嘛!
团结的力量才是最重要的!”“9”语重心长地说。
数学的小故事7
古时侯,一位王爷去山上看望习武的儿子。
兄弟几个见父王来了,立刻围了上来。王爷说:“孩子们,父王今天带来了你们最喜欢吃的大饼。”说着取出一个大饼平均分成了两份,给了老大一块。
嘴谗的'老二说:“父王,我想吃两块饼。”于是王爷把第二块饼平均分了成四份,给了老二两块。
贪心的老三说::“父王,给我三块饼。”王爷又把第三快饼平均分成了六份,给了他三块。
一向老实的大哥开腔了:“父王,老四最小,应该给他六块。”四听了非常高兴,觉得父王给他最多。
小朋友,你们觉得谁最多呢?
数学的小故事8
想必大家都认识数学,接触过数学吧?数学处处都可以用。不觉得数学很有趣吗?
数学,在买菜的时候可以用,买衣服时候可以用,买东西时候可以用。就连魔方也可以用到数学,因为,转魔方要用数学公式呀!还有国家经济发展也要用到数学……
说说我与数学的.故事:小的时候,爸爸经常教我数学,都是学数字,比如,1-10,如果有人问我十一,我就问:“十一是什么?十月一日吗?”爸爸在纸上写,口头上问我:三大,还是四大?我看着纸上的两个数字,当然,我是看笔画的,认为哪个大就哪个大。我说是三,爸爸捧腹大笑,笑完之后说:“傻孩子,是四大呀!”爸爸又教我减法和加法,当然,是不进位的,也是十以内的。那以后,我就分辨得出哪个比较大,哪个比较小。有一次,妈妈给爸爸3个苹果,却给我2个苹果,我生气地说:“不公平!我比爸爸少。”无奈,妈妈只好再给我一个苹果。
上了一年级,我们学了进位,也学会了买东西应该学的东西。有一次,我去买雪糕吃,我给了老板五十元,雪糕8元,老板却找我四十四元,我用减法算了算,是四十二元,我马上跑回去,说:“老板,是四十二元,不四十四元啊!”老板算算说:“对啊。谢谢你。”我笑了笑。
我学了很多知识,都关于数学,也联系生活实际,让我感觉数学很有用,你不觉得吗?
数学的小故事9
一天,法国蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。
蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的.次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。
数学的小故事10
又到了周末,妈妈带我去钓鱼(我们是去钓假鱼)。
我们来到红石公园,钓假鱼。
钓鱼摊在红石公园的东边,钓鱼池其实就是一个充气水池,里面有各种各样的.塑料鱼、小鸭子、章鱼、海豚什么的……,鱼竿也是塑料的,鱼线下面挂着一个吸铁球,鱼的嘴里砸了一个钉子,这样,就可以引鱼上钩了。
妹妹好奇地说:“这么一大池鱼,谁能钓完呀?再说,钓了放哪儿呀?”妈妈给我们每人交了两元五角,一共是五元,我和妹妹一人拿了一个钓鱼竿,就开始钓鱼了。
可是,鱼都沉在水底,可气的是,吸铁球死活也不往下沉,怎么办呢?所以,我一只手把吸铁球摁下去,另一只手拿着钓鱼竿,就这样,我们很快就钓到了一只只海豚、章鱼、热带鱼、金鱼等。
后来,又来了两个小弟弟。
其中一个弟弟钓得非常快,但是他一只海豚都没钓着。
我给他了4只,这下,我只剩8只了。
请你们猜猜吧,我原来有几只小海豚?你们肯定猜到了吧?是12只,算式是:4+8=12(只)。
我们玩了约一个小时,就回家了。
数学的小故事11
抛硬币是做决定时普遍使用的一种方法。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的`想法并不正确。
首先,虽然硬币落地时立在地上的可能性非常小,但是这种可能性是存在的。其次,即使我们排除了这种很小的可能性,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻弹,开始抛时硬币朝上的一面在落地时仍朝上的可能性大约是51%。
之所以会发生上述情况,是因为在用大拇指轻弹的时候,有些时候钱币不会发生翻转,它只会像一个颤抖的飞碟那样上升,然后下降。如果下次你要选出将要抛钱币的人手上的钱币在落地后哪面会朝上,你应该先看一看哪一面是朝上的,这样你猜对的概率要高一些。但是如果那个人是握起钱币,又把拳头调了一个个儿,那么,你就应该选择与开始时相反的一面。
数学的小故事12
1981年的一个夏日,在印度这个国家举行了一场心算比赛。表演者是印度这个国家的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。
工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的.答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。
这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。
数学的小故事13
王元,是著名数学家华罗庚的学生,现任中国科学院学部委员,数学研究所研究员,主要从事数论研究。几十年来,他的研究成果累累,得到了国际数学界的高度赞扬。他是怎样从一个学习成绩中等的学生成为一位著名的数学家的呢?
王元出生在一个知识分子的家庭,很早就受到启蒙教育。他不特别聪明,更不是神童,但是他同大多数有成就的人一样是通过苦学才获得成功的。王元的小学、初中时代,是在战乱与艰难中度过的。4岁上学,那时他还是个天真活泼的小孩,一心只想玩,结果连续留级了两年。上中学时学习成绩只是中等水平。
这样一个成绩中等的学生,却有一个十分突出的特点:兴趣广泛,求知欲强。凡是他兴趣所及,都肯花费时间刻苦钻研。开始,他喜欢看小说,不管多厚的本本,他都要想方设法看完它。他看别人拉二胡,自己也动了心,成为二胡的爱好者。由于他抓紧时间苦练,又肯动脑筋琢磨演奏技巧,不久就成为出色的二胡演奏者。后来,他又喜欢画画和游泳。他经常带着画板出去写生。画累了,就脱下衣服跳到湖里痛痛快快地游泳。广泛的兴趣,养成他不怕困难和一种强烈进取的精神。只要他感兴趣的项目,他总比别人学得好。
1948年,王元高中毕业考入浙江英士大学数学系。浙大是我国老一辈数学家陈建功、苏步青多年执教的地方,数学教育卓有传统。二位教授自30年代起就坚持办高年级学生读书讨论班,对于培养学生独立科学研究的能力极有帮助。浙大的`教学环境激发了王元对数学真正的兴趣。大学四年级时他在读书讨论班上报告了A·E·英哈姆的《素数分布论》。1952年,王元从浙江大学毕业,因成绩名列前茅,被推荐到中国科学院数学研究所,一年后又被分配到该所数论组。
王元有幸能在华罗庚教授的直接指引下开始其科研生涯。他到数论组是华罗庚亲自挑选的。王元在华罗庚领导的研究集体里边学习,边工作。为了攀登世界数学高峰,华罗庚举办了一个数论讨论班,王元参加了这个班的学习。华罗庚在讨论班指导,总是先把讲稿发给大家,然后叫大家报告、讨论。还有一个规矩,报告人讲完以后,必须回答别人提出的问题。如果答不出来,就要你把问题写在黑板上,站在台上思考,学生们把这种情况叫做“挂黑板”。
华罗庚在当时已经预测到赛尔伯格筛法和列尼克方法在数论中可能发展,可能是解决哥德巴赫猜想问题的一个有效办法。讨论班也就这一方面的问题开展探讨。有一天,轮到王元报告了,题目是赛尔伯格筛法。这实际上是一个二次型求极小值问题,它要联系到凑平方。王元在黑板上凑平方的时候,忽然紧张起来,左凑右凑也整不出来。他的问题在黑板上被整整挂了一个小时才解决。
王元被“挂黑板”以后,牢牢记住华罗庚的话,当前世界上从事这方面工作的人很多,掌握并钻研筛法意义很大。王元前进的目标明确了,他大胆地选择跟筛法有关的哥德巴赫猜想问题作为自己的主攻方向。他放弃一切休息日和文娱活动,更加专心致志地攻读。不久,他和一个外国科学家一起,写了两篇有关筛法研究的论文,在数学研究中初露头角。以后,王元又就同一个问题写了几篇论文,华罗庚看后狠狠地批评了王元一顿,他语重心长地说:“你有了速度很好,但还要有加速度,只在原水平的基础上工作,永远也不会有更好的成绩。”
王元很快就明白了华罗庚这番话的道理。他知道,物体要做加速运动,需要外力;科学研究要有加速度,需要勇于开拓。王元关于筛法与哥德巴赫猜想的研究,确立了他作为著名数论家的地位,王元主编的《哥德巴赫猜想》,全面总结了哥德巴赫猜想研究的发展与现状,其中包括他本人的工作。以后与华罗庚开始了长达20年的师生合作,取得了辉煌的成果。他的代表性著作有《数论在近似分析中的应用》、《哥德巴赫猜想》及《在中华人民共和国普及数学法》(以上与华罗庚合作)。王元对哥德巴赫猜想有精深研究,他首先证明了每个充分大的偶数为一个素因子不超过2与一个素因子个数不超过3的整数之和。这一成果在1984年获得国家自然科学一等奖;他又与华罗庚一起提出了计算多重积分的新方法,国际上称为“华—王方法”。
王元是在新中国成立以后,华罗庚教授亲自培养下成长起来的一代数学家,也是国际上公认的以华罗庚为首的“中国数论学派”的重要成员。“勤奋出天才”是王元的座右铭。他认为科学研究特别是基础研究在很大程度上靠积累,王元所做的读书笔记就达3400页,他从事科学研究而付出的辛劳由此可见一斑。王元又是一位谦逊的学者,研究哥德巴赫猜想的经历使他深深体会到,科学研究如同攀登无限的梯级,一个人无论达到多高,也总是在前人的基础上前进。因此他说:“恰如其分地估计自己不要过分陶醉于自己已经做了些什么,始终有个危机感,这样就永远不存在自满的可能性。”他认为,这种态度来源于对整个数学知识海洋的客观认识。
王元成为国际数学界享有声誉的数学家,他的成才之路是与勤奋、刻苦、谦逊的态度及不停顿地向科学高峰进击的精神分不开的。
数学的小故事14
阿拉伯数字1、2、3、4、5、6、7、8、9、0就是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。阿拉伯数字最初出自印度人之手,也就是他们的祖先在生产实践中逐步创造出来的。
公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的就是婆罗门式,它的独到之处就就是从1~9每个数都有专用符号,现代数字就就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”。这样,一套完整的数字便产生了。这就就是古代印度人民对世界文化的巨大贡献。
印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。
阿拉伯的数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的.28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。
印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字就是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。”
14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。
数学的小故事15
“悖论”这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论。那些结论会使我们惊讶无比。悖论主要有三种形式:1.一种论断看起来好象肯定错了,实际上却是对的(佯谬);2.一种论断看起来好象肯定对了,实际上却错了(似是而非);3.一系列理论看起来好象无懈可击,却导致了逻辑上自相矛盾。
悖论有点象变戏法,人们看完以后,几乎没有一个不惊讶得马上就想知道:“这套戏法是怎么搞成的?”当把技巧告诉他后,他便不知不觉地被引进深奥而有趣的数学世界中。
著名的《科学美国人》杂志社编的《数学悖论奇景》中,有不少生动而奇妙的题目,下面几则便选自其中。有的题目作了简略的分析,有的只提出问题,留侍读者去思索。
1.唐·吉诃德悖论
小说《唐·吉诃德》里描写过一个国家,它有一条奇怪的法律,每个旅游者都要回答一个问题:“你来这里做什么?”回答对了,一切都好办;回答错了,就要被绞死。
一天,有个旅游者回答:“我来这里是要被绞死。”
旅游者被送到国王那里。国王苦苦想了好久:他回答得是对还是错?究竟要不要把他绞死。如果说他回答得对,那就不要绞死他——可这样一来,他的回答又成了错的了!如果说他回答错了,那就要绞死他——但这恰恰又证明他回答对了。实在是左右为难!
2.梵学者的预言
一天,梵学者与他的女儿苏耶发生了争论。
苏椰:你是一个大骗子,爸爸。你根本不能预言未来。
学者:我肯定能。
苏椰:不,你不能。我现在就可以证明它!
苏椰在一张纸上写了一些字,折起来,压在水晶球下。她说:
“我写了一件事,它在3点钟前可能发生,也可能不发生。请你预言它究竟是不是会发生,在这张白卡片上写下‘是’字或‘不’字。要是你写错了,你答应现在就买辆汽车给我,不要拖到以后好吗?”
“好,一言为定。”学者在卡片上写了一个字。
3点钟时,苏椰把水晶球下面的纸拿出来,高声读道:“在下午3点以前,你将写一个‘不’字在卡片上。”
学者在卡片上写的是“是”字,他预言错了:“在下午3点以前,写一个‘不’字在卡片上”这一件事并未发生。但如果他在卡片上写的是“不”呢?也还错!因为写“不”就表示他预言卡片上的事不会发生,但它恰恰发生了——他在卡片上写的就是一个‘不’字。
苏椰笑了:“我想要一辆红色的赛车,爸爸,要带斗形座的。”
3.意想不到的老虎
公主要和迈克结婚,国王提出一个条件:
“我亲爱的,如果迈克打死这五个门后藏着的一只老虎,你就可以和他结婚。迈克必须顺次序开门,从1号门开始。他事先不知道哪个房间里有老虎,只有开了那扇门才知道。这只老虎的出现将是料想不到的。”
迈克看着这些门,对自己说道:
“如果我打开了四个空房间的门,我就会知道老虎在第五个房间。可是,国王说我不能事先知道它在哪里,所以老虎不可能在第五个房间。”
“五被排除了,所以老虎必然在前四个房间内。同样的推理,老虎也不会在最后一个房间——第四间内。”
按同样的理由推下去,迈克证明老虎不能在第三、第二和第一个房间。迈克十分快乐,他满怀信心地去看门。使他惊骇的是,老虎从第二个房间跳了出来。
迈克的推理并没有错,但他失败了。老虎的出现完全出乎意料,表明国王遵守了他的诺言。也许,迈克进行推理的本身就与国王关于老虎“料想不到”的条件发生了矛盾。迄今为止,逻辑学家对于迈克究竟错在哪里还末得到一致意见。
4.钱包游戏
史密斯教授和两个学生一道吃午饭。教授说:“我来告诉你们一个新游戏。把你们的钱包放在桌子上,我来数里面的钱。钱少的人可以赢掉另一个钱包中的所有钱。”
学生甲想:“如果我的钱多,就会输掉我这些钱;如果他的多,我就会赢多于我的钱。所以赢的要比输的多,这个游戏对我有利。”
同样的道理,学生乙也认为这个游戏对他有利。
请问,一个游戏怎么会对双方都有利呢?
5.一块钱哪儿去了?
一个唱片商店里,卖30张老式硬唱片,一块钱两张;另外30张软唱片是一块钱三张。那天,这60张唱片卖光了。30张硬唱片收入15元,30张软唱片收入10元,总共是25元。
第二天,老板又拿出60张唱片。他想:“如果30张唱片是一块钱卖两张,30张是一块钱卖三张,何不放在一起,两块钱卖5张呢?”这一天,60张唱片全按两块钱5张卖出去了。老板点钱时才发现,只卖得24元,而不是25元。
这一块钱到哪儿去了呢?
6.惊人的编码
外星的一位科学家基塔先生,来到地球收集人类的.资料,遇到了赫尔曼博士。
赫尔曼:“你何不带一套大英百科全书回去?这套书最全面地汇总了我们的所有知识。”
基塔:“可惜,我带不走那么重的东西。不过,我可以把整套百科全书编码,然后只要在这根金属棒上作个标记,就代表了百科全书中的全部信息。”真是再简单不过了!
基塔先生是怎样做到的呢?
基塔:“我先把每个字母、数字、符号,都用一个数来代表,零用来隔开它们。例如cat一词就编为3-0-1-0-22。我用高级袖珍计算机快速扫描,就能把百科全书的全部内容转变为一个庞大的数字。前面加一个小数点,就使它变成了一个十进制的分数,例如0.2015015011……
基塔先生在金属棒上找到了一个点,这个点将棒分为a和b两段,而a/b刚好等于上面那个十进制分数值。
基塔:“回去后,测出a和b的值,就求出了它们的比值;根据编码的规定,你们的百科全书就被破译出来了。”
这样,基塔离开地球时只带了一根金属棒,而他却已“满载而归”了!
7.不可逃遁的点
帕特先生沿着一条小路上山。他早晨七点动身,当晚七点到达山顶。第二天早晨沿同一小路下,晚上七点又回到山脚,遇见了拓扑学老师克莱因。
克莱因:“帕特,你可曾知道你今天下山时走过这样一个地点,你通过这点的时刻恰好与你昨天上山时通过这点的时刻完全相同?”
帕特:“这绝不可能!我走路时快时慢,有时还停下来休息。”
克莱因:“当你开始下山时,设想你有一个替身同时开始登山,这个替身登山的过程同你昨天登山时完全相同。你和这个替身必定要相遇。我不能断定你们在哪一点相遇,但一定会有这样一点。……”
帕特明白了。你明白了吗?
8.橡皮绳上的蠕虫
橡皮绳长1公里,一条蠕虫在它的一端。蠕虫以每秒1厘米的稳定速度沿橡皮绳爬行;而橡皮绳每过1秒钟就拉长1公里。如此下去,蠕虫最后究竟会不会到达终点呢?
乍一想,随着橡皮绳的拉伸,蠕虫离终点越来越远了。但细心的读者会想到:随着橡皮绳的每次拉伸,蠕虫也向前挪了。
如果用数学公式表示,蠕虫在第n秒未在橡皮绳上的位置,表示为整条绳的分数就是(推导过程从略):
当n足够大(约为e100000)时,上式的值就超过了1,也就是说蠕虫爬到了终点。
9.棘手的电灯
一盏电灯,用按钮来开关。假定把灯拧开一分钟,然后关掉半分钟,再拧开1/4分钟,再关掉1/8分钟,如此往复,这一过程的末了恰好是两分钟。
那么,在这一过程结束时,电灯是开着,还是关着?这个问题实在是难!
10、罗素悖论
一天,一个理发师挂出了一块招牌:“村里所有不自己理发的人都由我给他们理发,我也只给这些人理发。”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言。因为如果他给自己理发,那么他就属于自己给自己理发的那一类。但是,招牌上说明他不给这类理发,因此他不能自己理发。如果由另外一个人给他理发,他就是不给自己理发的人,而招牌上说明他要给所有不自己理发的人理发,因此他应该自己理。由此可见,不管做怎样的推论,理发师所说的话总是自相矛盾的。这是一个著名的悖论,称为“罗素悖论”。这是由英国哲学家罗素提出来的,他把关于集合论的一个著名悖论用故事通俗地表述出来。 1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为他们的基础。到19世纪末,全部数学几乎都建立在集合论是基础上了。就在这时,集合论中接连出现了一些自相矛盾的结果,特别是1902年“罗素悖论”的提出,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大量新成果,也带来了数学观念的变革。
11、上帝不是万能的
用反证法证明 证明:假设上帝是万能的,那么上帝能造出一块他自己都举不起来的石头, 否则上帝就不是万能的;但是上帝又举不起这块石头,因此上帝不是万能的,这与假设矛盾;所以原假设不成立,即上帝不是万能的
【数学的小故事】相关文章:
数学的小故事12-03
数学小故事(精选)03-11
数学小故事05-31
趣味数学小故事03-12
有趣的数学小故事06-02
(实用)数学小故事08-24
数学趣味小故事11-28
数学小故事范文03-21
关于数学的小故事11-09
我的数学小故事09-20