的数学思想方

时间:2025-12-16 22:06:59 好文 我要投稿
  • 相关推荐

的数学思想方法

的数学思想方法1

  20xx年10月,我有幸成为田老师“省能手工作站”中的成员。在田老师的带领下,我们团队积极开展活动,首先确立了第一个研讨主题—————“关于小学数学思想方法在课堂中的渗透”。为了更好的开展课题研究活动,我们首先收集了许多资料、文献,进行基础理论学习,为后面的研究实践奠定良好的基础。通过一次又一次的学习、交流,让我对数学思维能力培养的重要性和小学阶段常用的数学思维方法有了更新、更深刻的认识。

的数学思想方法

  数学思维能力是数学能力的核心,是我们运用数学知识分析和解决问题能力的前提。但数学思维能力的形成需要一个漫长过程,是离不开一节节数学课的积淀的。我想,作为一名数学老师,在课堂上不仅仅要传授数学知识,更重要的是渗透数学思想方法,培养孩子创新独立能力,这样才能有助于学生形成良好的思维习惯和品质,使其终生受益。

  一、注重独立思考

  当我们遇到新问题的时候,首先要给予学生独立思考判断的空间。如:这个问题中已经给出的条件是什么,要干什么?需要用到哪些知识,怎么来解决比较合理等等。当学生的思维判断有困难时,我们进行适当的点拨,或跟他们合作进行研究来解决。在这样的过程中,学生的思维力会得到训练和提高。

  二、强调实践操作

  在学生的学习过程中,我们要创设有利于质疑、探究的情境,让学生在独立学习的基础上学会与他人合作。同时,引导学生主动参与、乐于探索、勤于动手、学思结合,把抽象的知识具体化、形象化,从中感受认识、理解、掌握知识,在解决问题的过程中提高思维能力。

  三、提倡逆向思维

  课堂的40分钟是有限的,但学生的思维方向不能是单一的。这就要求我们在教学设计是,充分研读教材、整合资源,同时把握顺向、逆向这两条思维主线,通过“观察、实验、比较、归纳、猜想、推理、反思”等活动,优化思维品质,提高思维能力,培养创新精神和实践能力。

  四、激发创新思维

  课堂教学中不仅要培养学生分析和综合、抽象和概括的能力,还要培养学生从多个角度看问题的能力,即培养思维的灵活性和创造性。其实对于学生来说,只要尝试是前所未有的',对自己发展是有价值的,就是一种创新,这种思维就是创新思维。学生的创新不同于科学家、艺术家的创造发明,创造出新的“产品”,多数情况下学生的创新是解决问题时想出了其它办法和策略。在课堂上,要注意老师创设的情景,在老师的引导和激励下,激发自己的潜能和思维,大胆设想,主动探索,积极提出自己的新思想、新观点、新方法。

  关于小学数学思想方法的初探,让我开始重新审视自己的教学。在今后的课堂中,我们要及时归纳总结数学思想方法,给学生解决问题的“抓手”,让学生真正学会用数学的眼光观察生活,选择合适的数学思想方法解决问题。

的数学思想方法2

  一、教学进一步的升华

  读《小学数学与数学思想方法》,对数学老师是一次思想和教学的提升,让我们能够明白数学的本质是什么?做为一名小学数学老师,我们究竟该进行怎样的教学?王教授告诉我们当面对新一轮课程改革,我们需要转变观念,逐步培养重视数学思想的意识,同时又需要在数学的专业素养上的提高自己,这样才能更好地落实“四基”目标。这也让我们明白不能纯粹地教会学生一些知识,一些解决问题的技巧,更重要的是关注学生的思维,帮助学生初步地学会数学思想。

  全书分为上篇和下篇两部分,上篇主要阐述与小学数学有关的数学思想方法,下篇是义务教育人教版小学数学中的数学思想方法案例解读。本书思想脉络清晰,上篇主要帮助教师认识数学思想方法,具有理论指导意义,下篇旨在通过生动形象的案例,让教师感悟如何传授数学思想,具有实践指导意义。

  二、我和大家一起分享我学习第二节“数学思想方法的教学”的心得

  此书读过之后,我发现王教授阐述二年级下册《表内除法(一)》的教学过程,回想起自己所教的还是发现自己有很多不足,我只顾教学生数学方法,忽略传授数学思想,例如从文中了解到除法在教学的过程中分五个模块让学生经历除法概念的形成过程做了很多铺垫,如设计参观科技园准备分食物的大情境,如图1-3,通过例1把6块糖果分成3份理解平均分,通过例2和例3体验平均分有两种实际情况及平均分的过程、方法与结果,再通过例4把12个竹笋平均分成4盘引出除法、除号的概念,最后通过例5把20个竹笋每4个放一盘引出被除数、除数和商的概念。整个教学过程非常丰富,有观察、操作、演示、语言表达、画图、书写、符号特征、思考等多种活动,学生在已有的生活经验和积累的活动经验的基础上,逐步抽象出除法,初步理解除法的概念。再通过适当的练习和利用乘法口诀求商,进一步理解除法的概念。

  在这教学过程中,只有引导学生感受从直观操作的具体情境中抽象出除法概念的抽象思想,认识用除法符号表达的具有简洁性的符号化思想,体会用实物、图形帮助理解除法的具有直观性的数形结合思想,体会再出发中商随着被除数、除数的变化而变化的'函数思想。这让我明白在教学上也不能忽略传授思想方法,要不学生只“知其然不知其所以然”,所以在教学上只有不断地学习,才能不断的创新。

  三、学习“分类思想”的体会

  每个学生在日常中都具有一定的分类知识,如人群的分类、书籍的分类等,我们利用学生的这一认识基础,把生活中的分类迁移到数学中来,在教学中进行数学分类思想的渗透,挖掘教材提供的机会,把握渗透的契机。这样学生们不仅仅能感受数学来源与生活,还能让每个学生轻松的学习。

的数学思想方法3

  数学知识是数学思想方法的载体,思想方法是数学知识的进一步抽象概括,因而数学思想方法有一个特点,它并不像数学知识技能那样显而易见,往往是隐形的。

  新教材注重贯彻四基目标,其中数学思想的编排主要体现在两个方面:

  一是在数与代数、图形与几何、统计与概率、综合与实践这四个领域结合各部分知识体现各种数学思想;

  二是每册教材单独设置“数学广角”单元,利用操作和直观等手段呈现重要的数学思想。

  一、抽象思想和符号化思想

  (1)从具体的情境和直观图中抽象出数学符号0~9,关系符号“=”“<”“>”运算符号“+”“-”等;并理解这些符号的含义。教材编排,让学生从具体到抽象,经历了符号化的过程,感受符号的简洁。同时这里还呈现了简单的象形统计图,让学生感受统计思想和一一对应思想。

  (2)结合生活经验、数小棒、计数器等直观操作手段,经历十进制计数原理的抽象过程。

  抽象思想存在于数学学习的全过程,虽然一年级的数学知识看起来很简单,但实际上也是充满了抽象。无论是数的认识还是计算,都离不开抽象的十进制计数原理;时间作为表示物质运动的始终过程或过程中的一点,充满了抽象;几何图形虽然比较直观,但从物体到图形也是一个抽象的过程。我们在教学十进制计数原理,10和9相比已有本质不同。

  二、分类思想

  分类思想的教学要抓住全面、有序地思考等特点,在低年级也可以渗透,具体内容和教学目标如下:

  (1)结合认识物体,让学生感受分类思想。给各种形状的物体起个名称,实际上就是按照形状分类。

  (2)结合数的组成,让学生感受分类思想的优势、有条理地思考的优越性。

  三、归纳法

  整理学过的20以内的进位加法算式,观察算式的特点,归纳出其中的规律。再根据发现规律就能够比较容易填写空格,有利于培养推理能力。

  四、演绎推理思想

  数学家张景中院士认为计算和推理是相通的,计算中有方法,方法里就体现了推理;推理是抽象的`计算,计算时具体的推理。让学生感受推理思想,同时能够灵活地思考。推理本身具有逻辑性,但是要灵活地运用推理。

  五、数学结合思想

  (1)体会“形”的直观性。各种实物或图形作为各种直观工具帮助学生理解和掌握知识、解决问题,如借助直线认识数的顺序并计算,认识数的时候用小棒摆三角形、正方形、五边形、六边形等。

  (2)了解可以用数来描述几何图形。各种图形的认识,课增加用数的量化来描述形。

  六、函数思想

  在加法算式中,一个加数不变,和随着另一个加数的变化而变化,在减法算式中,被减数不变,差随着减数的变化而变化,都可以渗透函数的思想。

  思考:数学知识是数学思想方法的载体,思想方法是数学知识的进一步抽象概括,因而数学思想方法有一个特点,它并不像数学知识技能那样显而易见,往往是隐形的。我们教师在备课时,心里就要明确这些数学思想,那么在教学中才能有所体现。这也就需要我们老师加强解读文本的功底,而不在只是为教数学知识而教数学知识。

的数学思想方法4

  “让读书成为师生的习惯,让书香浸润全校师生的心灵”是莒南县第一小学倡导师生阅读的初衷。20xx年,学校提出了“六年影响一生”的办学理念,着力打造内涵发展的学校。作为师生成长发展的重要措施,学校启动了“书香校园”的建设。学校试行“长短课结合”,开设大阅读课,统一制定学生阅读计划,按班级人数购置《中国小学生基础阅读书目》等100种近万册图书,周二至周五下午,在老师的指导下集体阅读,保障了阅读时间和效果。教师读书交流会、师生读书才艺展示、重阳节经典诵读活动、“书香伴我成长”主题教育活动、读书征文活动等一系列形式多样的读书交流活动,丰富了广大师生的读书生活,使读书成为一种享受,成为一种快乐!在国家倡导“全民阅读”的大背景下,3月30日,学校举行了“首届读书节”活动启动仪式,拉开了学校读书活动新的启程。作为此次活动的重要组成部分,凝结了广大教师在寒假中读书的所感所想,是教师专业幸福成长的又一见证!

  读了王永春老师的《小学数学与数学思想方法》,我对小学数学与数学思想方法有了更进一步的认识。下面是我梳理一些知识。

  一、对小学数学思想方法的认识。

  数学思想是数学知识内容的精髓,是对数学的本质认识。是从某些具体的`数学内容和对数学的认识过程中提炼上升的数学观点,是构建数学理论和用数学理论解决问题的指导思想。

  数学方法是指从数学角度提出问题、解决问题时所采用的各种方式和手段。数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。因此,二者是有密切联系的。我们把二者合称为数学思想方法。

  数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。

  二、小学数学思想方法的重要意义。

  1、有利于建立现代数学教育观、落实新课程理念

  数学课程《标准(20xx版)》在总体目标中进一步提出:“通义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。”首次提出了“四基”的、目标和理念,也首次把数学思想作为义务教育阶段,尤其是小学数学教育的基本目标之一,更加强调数学思想的重要性和重视数学思想的贯彻落实。

  2、有利于提高教师专业素养、提高教学水平

  《标准(20xx版)》把数学基本思想作为“四基”之一之后,我面临更大的挑战,一方面是关于数学思想方法的专业知识方面的欠缺,另一方面是课堂教学中应该具备的数学思想方法的意识、经验、策略等的不足。

  3、有利于提高学生的思维水平。培养“四能”完善认知结构,指导学习迁移,促进思维发展。

  因此,在小学数学阶段有意识的向学生渗透一些基本的数学想方法可以加深学生对数学概念、公式、法则、定律等知识的数学本质的理解,提高学生发现问题、提出问题、分析问题和解决问题的能力及思维能力,也是小学数学进行素质教育的真正内涵之所在。同时,也能为初中数学的学习打下较好的基础。

  三、教学中如何有意识的渗透数学思想方法

  1、重视思想方法目标的落实。

  2、在知识形成过程中体现数学思想方法。

  3、在知识的应用过程中体现数学思想方法。

  4、在整理和复习、总复习中体现数学思想方法。

  5、潜移默化、明确呈现、长期坚持

的数学思想方法5

  小学数学课程标准明确提出:让学生获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能。美国教育心理家布鲁纳也指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的光明之路。

  在小学数学中,蕴含着各种各样的数学思想方法,比如化归法、符号法、组合思想、转化思想、演绎推理等等,有关数学思想方法的培养没有明确而具体的要求,其呈现形态也不十分明显,再加上其本身的抽象性和小学生的年龄特点,也不可能直接地告诉学生,但是在小学阶段进行有计划、有意识的渗透,是十分必要的,这对发展学生学习数学能力,丰富数学经验,特别是对于学生今后的后继学习,具有举足轻重的作用。

  那怎样渗透呢?怎样讲究渗透的策略呢?现以苏教版小学数学教材教学为例,从微观角度进行探索,将自己思考和感悟与同仁共享之。

  一、剖析教材,在教学内容中渗透

  数学思想是前人探索数学真理过程的积累,但数学教材并不一定是探索过程的真实记录。恰恰相反,教材对完美演绎形式的追求往往掩盖了内在的思想和方法,所以一方面要不断改革教材,使数学思想在教材中得到较好反映与体现;另一方面要深入分析教材,挖掘教材内在的思想和方法。

  如四年级下册小数乘法这一单元,过去的教材把它拆分为小数乘整数、整数乘小数、小数乘小数,但新教材中均把它们转化成一种方法:只要先按照整数乘法计算,再看两个乘数一共有几位小数,积就有几位小数。同样,小数除法这一单元也是进一步体会转化思想的好时机:除数为小数的除法都要转化为除数为整数的除法再计算。教师要把转化这种思想充分展现出来,让学生感受到转化这一思想给计算带来的方便。

  再如学乘法,九九表总是要背的。五七三十五的下一句是六七四十二,如果背了上句忘了下句,可以想想35+7=42,就想起来了。这样用理解帮助记忆,用加法帮助乘法,实质上就包含了变量和函数的思想:五变成六,对应的35就变

  二、亲历体验,在探究过程中渗透

  新课程特别强调要让学生探究知识,体验知识的形成过程,在探究活动中学生思想高度活跃,多种思维碰撞,教师心中应明确:利用这样的良机进行数学思想方法的渗透,非常的有利,同时也应明确要渗透哪些的数学思想方法,增强针对性,特别要讲究层层推进、步步深入。

  例如一位青年教师在执教圆的认识时,先在黑板上画了一个圆(圆中已画了一条半径),然后提问:我画直径,大家很快说出画得对或错,当学生解答后,教师小结:要判断对错一定要先研究好直径的特点。再问:下面两个问题提示我们进行直径的研究,大家想一想要选择哪一个(A对照圆心来研究,B对照半径来研究)。

  学生讨论确定选择了B后,再问:可以通过什么方式得到直径的长度?有的学生说用测量,有的学生说利用半径,教师问:怎样利用半径来求出直径的长度呢?学生1答;2个半径等于一个直径;教师问:有没有更简洁的表达?学生2:直径=半径2;教师又问;还能更简洁吗?生3:D=2R。教师小结:非常好,这就是数学的语言。

  这位老师在这样一个引领学生探究体验知识的过程中,除了渗透归纳、抽象概括等数学思想外,还渗透了数学最最讲究的符号思想,用符号来阐释数学规律,而学生就在步步深入的探究学习活动中获得相应的数学思想方法的训练。

  三、解决问题,在思维活动中渗透

  解决问题的策略是小学数学知识结构中新的部分,是一个凸显数学本质的教学领域,它需要用系统的眼光,构建一个适合学生学习的序列。每一个引领学生解决数学问题的过程,都是渗透数学思想方法的过程。为了使渗透更有效,一定要充分展示思维过程,让学生充分感受思维活动的程序,在不知不觉中形成良好的思考问题的品质和方法。日常教学中我们对于数学应用题的解决,一般采取两种思维方式,这实际上就是两种数学思想方法,一种是演绎推理,一种是归纳推理。

  比如一个长方形的.长是20米,宽是长的一半,这个长方形的面积是多少?可以引导学生这样解决问题;要求面积必须知道什么条件?(长和宽),这两个条件哪个是已知的?(长)哪个未知?(宽),宽和什么有关系?(是长的一半)怎样求出来?(202),宽求出来了,面积怎样求呢?(长宽即2010);引领学生展现这一思维过程就是让学生体验演绎推理方法的过程。

  当然,这道题还可以从条件入手:能不能直接算出长方形的面积?知道了长和宽是长的一半,可以求出什么?宽求出后,能不能算出面积?引领这一思维过程就是让学生感受和体验归纳推理的过程。解 决数学问题可以明白地告诉学生可以从问题入手去思考解决,也可以从条件入手去思考解决,让学生充分地去感知,去运用,就获得了数学思想方法的训练。

  三、巧作转化,在情境比较中渗透

  转化是一种常见的、极其重要的策略。转化是指把一个数学问题变更为一类已经解决或比较容易解决的问题,从而使原问题得以解决的一种策略。

  例如一位教师在执教六年级下册教材解决问题的策略转化一课中,有这样一个片断:

  师:为了喜迎2008年北京奥运,欢欢和迎迎开始学习了剪纸,他们想把中国的剪纸艺术介绍给全世界的人们。瞧,这就是他们第一次的作品。课件出示例1,提问两个图形的面积相等吗?你是怎样想的呢?拿出方格纸,在图形上试着画画、算算。

  学生独自尝试,交流想法。生1:把第一个图形上面的半圆向下平移5格,把第二个图形下面的左右半圆分别割补到上面,这样就变成两个一样大小的长方形。生 2:把第一个图形下面的图形向上平移5格,把第二个图形下面的左右半圆分别旋转180,这样就变成两个一样大小的长方形。

  师:大家用什么方法解决这个问题的?怎样转化的?生:轻声说说转化的过程。师:还有其它的方法解决这个问题吗?同桌合作,试一试。生:按不满一格算半格,左边图形的面积是20格,右边图形的面积也是20格,两个图形面积相等。师:比较两种方法,你更喜欢用哪种?为什么?生:喜欢用转化的方法,因为它比较简捷。师:看来,运用转化的策略,能将复杂的问题变得简单化。

  转化作为一种广泛运用的策略,它蕴含了一种重要的数学思想。因而,教学这一策略时,教师不能着眼于学生会运用这一策略解决问题,应努力使学生在学习和运用转化策略解决问题的过程中充分体会数学思想的魅力。

  四、走进生活,在数学比照中渗透

  在数学学习过程中,任何一项数学知识的探究、理解、掌握,都可以在生活中寻找到具体实在的体验,也就是可以从生活中寻找到参照物,这一寻找和比较的过程,就渗透了类比推理或者是角度转换的数学思想方法,而且这样的比照生活体验对于学生的数学学习非常的有意义、有价值。比如学习等式,可以从跷跷板的平衡去比照,学习数字、几何图形都可以从生活中的物体数量和生活中的建筑去比照。

  一位特级教师讲了一个有关她的切身经历:她教过一位学生,数学基础知识差,数学应用题常常解答不出来,教师和学生都很苦恼,有一次,她在一次家访中意外地发现了这位学生的一绝:算钱一流,他会帮父母算钱、收钱、找钱,而且速度非常快,几乎不出差错。这给了老师一个启示,老师马上付诸行动,只要是应用题,她就把它转换成价格类的应用题,然后让这位学生来解答,没想到,都答得很好,后来这位学生在没有老师的帮助下,自己将一些应用题进行了价格转换来解答,再后来,这样的价格转换慢慢地消失了,这位学生最终无须转换就能自如地解答应用题了。

  这一生动的事例,虽是个案,但足以说明,比照生活体验的数学学习,是富有灵性的,其中师的做法更是向学生渗透了这样的数学思想方法:类比推理、知识转换,学生就是在比照的过程中,获得了数学思想方法的训练。

  五、联系经验,在感悟体验中渗透

  学习新知识,必须借助已有的知识经验,通过把要学的新知转化成已学的知识经验,就是一种非常好的数学思想方法,我们一定要让学生养成一种意识,自觉地把新知转化为旧知,从新旧知识的内在联系中悟出新方法、新知识、新道理。比如学习方程,可以从已学的等式中去获得感悟,达到知识迁移;学习分数,可以从已学的小数中获得感悟等等。而要更好地悟中渗透,就是教师要创设一定的问题情境,用巧妙的问题联结起新旧知识,促使学生感悟和思考。

  比如一位老师在上小学一年级《确定位置》时,出了一道问题:到电影院看电影,怎样找到自己的位置呢?首先出示了第一个图例,座位号从左往右是1、2、 310;这样的题因为在新知探索中非常充分,没有难度,很快就解决了,接着老师再出示了另外一个电影院,但座位分两边,单号1、3、5、7、9在左,双号2、4、6、8、10在右,教师这时候提了两个问题;两个电影院有什么共同的地方?有什么不同的地方?这两问就把新旧两个知识点有机地联结起来,这两问也是渗透了一种数学思想:转化成旧的知识经验进行对比思考,这两问也是为了一年级学生更好地悟清知识及其内在联系。

  在我们数学教学活动中,这样引导学生悟的小细节非常重要,到了高年级的时候我们甚至可以由教师的设问转变为由学生自己设问,到那时学生将更加自觉地联系数学经验,更加自觉地获得数学思想方法的训练。

  六、介绍历史,在数学文化中渗透

  读史使人明智。美国著名数学教育家波里亚曾说过,学习数学只有当看到数学的产生、按照数学发展的历史顺序或亲自从事数学发现时,才能最好的理解数学。介绍数学史的目的在于灵活恰当的利用数学史。教材中概括性的叙述,未能表现出创造过程中的挫折、斗争、数学家经历的艰苦漫长的道路。如果在教学中渗透这些内容,学生不仅可以获得知识,了解数学思想方法,还将会被他们追求真理的勇气和毅力所感染,有助于培养学生热爱科学,追求真理的良好品质。

  如在教学圆周率概念时,可以向学生简介我国古代数学家刘徽、祖冲之在计算圆周率方面取得的杰出成果,使学生了解古人为探求知识所付出的艰辛劳动,了解在解决这一具体问题时所运用的无穷逼近思想方法,已成为研究数学科学的一个重要的思想方法,在现代的分析数学中依然发挥着很大作用。

  再如在教学无限不循环小数时。要注意历史在形成这一概念所经历的曲折,充分估计学生学习这一概念的困难,要让学生了解无限不循环小数的客观存在性是经过严密证明的,他解决了有限小数和无限循环小数不能解决的一些问题,让学生感到学习这一新概念的必要性。数学史中还有很多典型问题,如鸡兔同笼、不定方程、幻方研究这些问题的过程中蕴涵了许多富有启发性的思想方法,在教学中都 可以借鉴和运用。

  数学思想方法是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识。由于小学生的认知能力和小学数学内容的限制,只能将部分重要的数学思想方法落实到小学数学教学过程中去,而且数学思想方法在教学中的渗透不宜要求过高。

  总之,数学思想在教学中的渗透,往往要经历一个循环往复、螺旋上升的过程,而且是几种思想方法交织在一起,在教学过程中教师要依据具体情况,在某一段时间内重点渗透与明确一种数学思想方法,这样效果就会好得更多!

的数学思想方法6

  本单元是在学生学过万以沟数的读、写法的基础上教学的。主要内容包括亿以内数的读法和写法,比较数的大小和近似数。

  1.亿以内数的读法

  这部分教材包括进一步认识计数单位、数位、数位顺序表和亿以内数的读法。

  教材先通过首都北京的人口、光速说明日常生活生产中还经常用到比万大的数,然后在复习“一”“十”“百”“千”计数单位后,借助算盘引出亿以内的计数单位及每相邻两个单位之间的关系,接着介绍数位和数位顺序表、四位一级的计数法,最后结合在算盘上记数教学亿以内数的读法。

  亿以内数的读法是以万以内数的读法为基础的,掌握亿以内数的读法的关键是理解数位的意义和熟记数位顺序。因此,教学时要性意结合算盆上记数复习万以内的计数单位、方以内数的读法,并结合数的组成说明数位的意义和顺序,让学生搞清“计数单位”和“数位”、“数位”和“位数”之间的联系与区别,知道同一个数字在某数中的位置不同,所表示的意义也就不同。然后借助算盘比较万级的数与个级的数,启发学生类推出整万数的读法,找到万级的数与个级的数读法的.异同,理解万级的数要按照个级的数读法来读,再在后面加上“万”字。

  教学含有两级的数的读法,要强调弄清这个数是几位数,最高位是什么位,哪些是万级上的数字,哪些是个级上的数字,还要强调先读万级再读个级。最后结合例题引导学生共同总结亿以内数的读法。中间有0的数的读法是难点,教学时要结合实例强调每级末尾不管有几个0,都不读,其他数位有一个0或连续几个0,都只读一个0,并注意安排有关的专门练习和个别辅导。此外,写出读法时一提醒学生要写中文字。

  2.亿以内数的写法

  这部分内容教材先是结合数位顺序表教学整万数的写法,然后教学含有两级的数的写法。亿以内数的写法由于数位多,学生容易出错。掌握亿以内数的写法的关键与读法相同,也是理解数位的意义和熟记数位顺序,由个级的数的写法类推到万级。教学整万数的写法时,可惜助算盆上记数,先在算盘上拔出整万数,然后再写出来,最后启发学生比较万级的数与个级的数的写法的异同,着重理解整万数在按照个级的数的写法写出后,末尾要加上四个0.教学含有两级的数的写法,要结合数位顺序表和算盘记数,着重强调先写万级再写个级,正确确定这个数是几位数,万级上有几位,再一级一级往下写。

  中间或末尾有0的情况,学生易错。教学时要强调:哪一位上一个单位也没有,就在哪一位上写0,并且告诉学生检查方法,可以先想写的数是几位数,写完后再检查核对位数,还可以读一读写出的这个数来防止写错。另外,要注意了解学生写数情况,加强个别指导,纠正学生在写数中的错误。

的数学思想方法7

  一、集合的思想方法

  把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。

  如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。

  二、对应的思想方法

  对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。

  如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。

  三、数形结合的思想方法

  数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。

  例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。

  四、函数的思想方法

  恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。

  函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。

  五、极限的思想方法

  极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。

  现行小学教材中有许多处注意了极限思想的渗透。在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1÷3=0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。

  六、化归的.思想方法

  化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不

  断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。

  如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。

  七、归纳的思想方法

  在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。

  如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。

  八、符号化的思想方法

  数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。

  人教版教材从一年级就开始用“□”或“”代替变量x,让学生在其中填数。例如:1+2=□,6+=8,7=□+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出□○□=□(个)。

  符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此,教师在教学中要注意学生的可接受性。

  九、统计的思想方法

  在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法

  小学数学除渗透运用了上述各数学思想方法外,还渗透运用了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。

的数学思想方法8

  数学方法是数学思想的具体化形式,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。实质上两者的本质是相同的,差别只是站在不同的角度看问题,通常混称为思想方法。数学思想方法的自觉运用会使我们运算简洁、推理机敏,是提高数学能力的必由之路。常见的数学思想方法有:数形结合方法、对应思想方法、转化思想方法、猜想验证思想方法等。下面就以自己的教学实践为例谈谈在实际教学中渗透这些数学思想方法的一些粗浅做法。

  一、数形结合的思想方法

  数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。

  在小学一年级刚开始学习数的认识时,都是以实物进行引入,再从中学习数字的实际含义。例如学习“6的认识”时,先出示主题图,问学生图中有些什么?学生从中数出6朵小花,6只小鸟,6个气球。从而感知5的某些具体意义。再从实物中慢慢抽象成某一特定物体,利用学生的学具小棒摆出由6根小棒组成的任何图形,从而让学生在动手的过程中,不仅表现出自己的独特创意,而且更深一层地理解6的实际意义;第三层次是利用黑板进行画6个圆,6个正方形,6个三角形等特定图形来代表6,从而慢慢抽象至数字6。这样从实物至图形,在抽象到数字,整个过程应该符合一年级小学生的特点,也是数形结合思想的一种渗透。

  二、对应思想方法

  利用数量间的对应关系来思考数学问题,就是对应思想。寻找数量之间的对应关系,也是解答应用题的一种重要的思维方式。

  在低、中年级整数应用题训练时,教师就应该让学生明白数量之间存在着一一对应的关系。

  例如:水果店上午卖出苹果6筐,下午又卖出同样的苹果8筐,比上午多卖100元,每筐苹果多少元? 这里存在着钱数和筐数的对应关系,学生如果能看出下午比上午多卖的100元对应的筐数是(8-6)筐,此题就迎刃而解了,即100÷(8-6)=50(元)。

  此外,在教学归一问题、相遇问题时,都要让学生找到题中数量之间的对应关系。解决问题对于小学生是个抽象的问题,特别对于低、中年级学生更难理解。但找到了对应关系,也就找到了解题的关键。

  三、转化思想方法

  转化就是在研究和解决有关数学问题时,采用某种手段将一个问题转化成为另外一个问题来解决。一般是将复杂的问题转化为简单的问题,将难解问题转化为容易求解的问题,将未解决的问题转化为已解决的问题。

  例如:上“整十、整百相加减”一课时,先让学生观察,然后问一问,能不能把整十、整百相加减化为我们以前所学过的`几加几,几减几,这样学生不仅很快能掌握新学得知识,还可以自己解决整百相加减。这正是再渗透转化思想的方法。

  四、猜想验证思想方法

  猜想验证是一种重要的数学思想方法,正如荷兰数学教育家弗赖登塔尔所说:“真正的数学家常常凭借数学的直觉思维做出各种猜想,然后加以证实。”因此,小学数学教学中,教师要重视猜想验证思想方法的渗透,以增强学生主动探索和获取数学知识的能力,促进学生创新能力的发展。

  例如:教“乘法分配律”一课时,我设计了以下几个环节:

  1、出示例题:(1)(6+8)×25 (2)6×25+8×25

  学生独自计算结果。

  2、讨论两个算式的异同点。

  3、根据自己的发现举出类似的例子,并加以计算。

  4、验证后,总结归律。

  这样,通过算、讨论、说、算、说,学生初步感知了乘法分配律。至此,猜想乘法分配律已是水到渠成。

  现代数学思想方法的内涵极为丰富,诸如还有集合思想、极限思想、优化思想、统计思想、等等,小学数学教学中都有所涉及。我们广大小学数学教师要做教学有心人,有意渗透,有意点拨,重视数学史的渗透,重视课堂教学小结,要以适应小学生年龄特点的大众化、生活化方式呈现教学内容,让学生通过现实活动,主动参与、自主探究,学会用数学思维方法提出问题、分析问题、解决问题,从而让学生的数学思维能力得到切实、有效地发展,进而提高全民族的数学文化素养。在小学数学中,数学思想方法给出了解决问题的方向,给出了解决问题的策略。这就需要教师挖掘、提炼隐含于教材的思想方法,纳入到教学目标。有目的、有计划、有步骤地精心设计教学过程,有效地渗透数学思想方法。

的数学思想方法9

  每次看书我都会发现自身的问题,这次也不例外。我会对比着去发现自己哪些地方还没有做到,然后再去发现我需要学习什么。

  一.不足

  1.尽管课堂上我会认真帮助同学们分析每一道题,一些时候会将习题变式,但只是就题做题。可是我却忽略了向同学们传授思想方法。也就是学生只“知其然不知其所以然”。从教两年多来也算得上是一大败笔。

  2.大多数授课都是将概念直接传授给学生,很少让学生去主动探索,就像书上说的一样“只注重现成结论的传授,不讲究生动过程的展示,终究会走进死胡同”。现在细想会感觉到,让学生花费一节课去探索甚至比自己讲两节课效果都要好。

  3.复习时,我还按着老式传统方法,出题做题讲题......反复循环。根本就没做到在思想方法上的总结提升。

  二.改进之处

  1.关于符号。在低年级的'时候强调同学们的直观感受,高年级时涉及到的知识就不能单纯的通过特殊例子归纳总结让他们识记了。应该通过习题让他们自己发现问题、提出问题、归纳问题、总结问题。

  2.通常在做卷子或者报纸时,最后都有一道能力提升题。其中有很多习题要求归纳总结、填空或者计算,而我们通常的做法是拿住题就讲,却恰恰忘了问题的源头就是某些法则、公式或者定律。倘若我们能教给学生逆推出这样的的习题是用什么样的法则、公式或者定律而来的,那结果肯定事半功倍。

  三.总结

  看完前两章确实很惭愧,因为就自身而言都不能很好的将各种类型的思想方法掌握,更甭说将思想方法传授给学生了。既然发现了问题那么接下来的时间我一定好好改正,将还没有理解透彻的精髓反复研读,争取在掌握数学的思想方法这方面能够有所提升。

的数学思想方法10

  之前一提到数学思想方法,总是感觉似乎知道一些,想过应用它来指导自己的教学,但是自身对数学思想方法的理解不深透,另外又觉得数学思想方法的渗透教学在课堂教学中短时期难以见成效。所以,本人的教学现状中对数学思想渗透的深度远远不够。

  而读了《小学数学与数学思想方法》这本书,王永春老师对数学各类思想方法的梳理和对新教材思想方法的解读,让我对新课标的新理念有了更深一层的理解,对小学数学思想方法的内涵有了较为深刻的认识,明确了教材使用和课堂环节中的渗透策略。

  《小学数学与数学思想方法》首先对数学数学思想方法的概念、对小学数学教学的意义、对小学数学进行教学的可行性与方法做了简介。其次,梳理了与抽象有关的数学思想:包括抽象思想、符号化思想、分类思想、集合思想、变中有不变思想、有限与无限思想;与推理有关的数学思想:包括归纳思想、类比思想、演绎思想、转化思想、数形结合思想、几何变换思想、极限思想、代换思想;与模型有关的数学思想包括:模型思想、方程思想、函数思想、优化思想、统计思想、随机思想;其他数学思想方法包括:数学美思想、分析法和综合法、反证法、假设法、穷举法、数学思想方法的综合应用。最后,对小学数学1-6年级共十二册教材中数学思想方法案例进行了解读。

  经过研读我发现,数学教材的教学内容始终反映着数学知识和数学思想方法这两方面,数学教材的每一章、每一节乃至每一道题,都体现着这两者的有机结合,数学思想方法有助于数学知识的`理解和掌握。如本人执教的三年级下册第八单元搭配,就突出体现了分类思想、符号化思想。第一课时,我让学生体会解决排列组合问题时,就用到了分类讨论的方法有序全面的解决问题。如在用数字0、1、3、5组成没有重复数字的两位数时,多数学生没有分类有序思考,而是比较杂乱地写了组成的两位数,只有少数学生有序地书写。当我让几个学生把他们的方法展示在黑板上,引导学生交流比较后,发现,有学生漏写,有孩子写重复,其中一个孩子书写时分成三类:十位上是1的是10、13、15,十位上是3的有30、31、35,十位上是5的有50、51、53,保证有序全面地排列出来,肯定了有序思考的重要性。再次放手让学生进行组数是,半数以上的学生能又对又快地进行分类有序排列了。第二课时搭配衣服,两件不同的上衣搭配三条不同的裤子,一次各选一件,有多少种搭法,学生已经有了分类的意识,如何才能高效地解决问题呢?这时我们需要将形象的东西进行符号化,可以将衣服用几何图表示,可以用字母表示,也可以绘图表示。也有孩子用数字来表示,然后进行连线搭配,这样保证快速有效地解决问题。

  由此看来,数学思想方法的渗透与运用对于数学问题的解决有十分重要的意义。在教学中不能只注重数学知识的教学,忽视数学思想方法的教学。两条线应在课堂教学中并进,无形的数学思想将有形的数学知识贯穿始终,使教学达到事半功倍。

  但是任何一种数学思想方法的学习和掌握,绝非一朝一夕的事,它需要有目的、有意识地培养,需要经历渗透、反复、不断深化的过程。只要我们在教学中对常用数学方法和重要的数学思想引起重视,大胆实践,持之以恒,有意识地运用一些数学思想方法去解决问题,学生对数学思想方法的认识才会日趋成熟,学生的数学学习才会提高到一个新的层次。

的数学思想方法11

  1、函数与方程的思想

  著名数学家克莱因说“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考”。一个学生仅仅学习了函数的知识,他在解决问题时往往是被动的,而建立了函数思想,才能主动地去思考一些问题。

  函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。

  所谓方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。

  函数和方程、不等式是通过函数值等于零、大于零或小于零而相互关联的,它们之间既有区别又有联系。函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。

  高考把函数与方程的思想作为七种思想方法的重点来考查,使用选择题和填空题考查函数与方程的思想的基本运用,而在解答题中,则从更深的层次,在知识网络的交汇处,从思想方法与相关能力的关系角度进行综合考查。

  在解题时,要学会思考这些问题:(1)是不是需要把字母看作变量?(2)是不是需要把代数式看作函数?如果是函数它具有哪些性质?(3)是不是需要构造一个函数把表面上不是函数的问题化归为函数问题?(4)能否把一个等式转化为一个方程?对这个方程的根有什么要求?……

  2、数形结合的思想

  数学研究的对象是数量关系和空间形式,即“数”与“形”两个方面。“数”与“形”两者之间并不是孤立的,而是有着密切的联系。数量关系的研究可以转化为图形性质的研究,反之,图形性质的研究可以转化为数量关系的研究,这种解决数学问题过程中“数”与“形”相互转化的研究策略,即是数形结合的思想。

  数形结合的思想,在数学的几乎全部的知识中,处处以数学对象的直观表象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提供简捷明快的途径。它的运用,往往展现出“柳暗花明又一村”般的数形和谐完美结合的境地。华罗庚先生曾作过精辟的论述:“数与开形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难人微,数形结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系切莫离。”

  数形结合既是一个重要的数学思想,也是一种常用的解题策略。一方面,许多数量关系的抽象概念和解析式,若赋予几何意义,往往变得非常直观形象;另一方面,一些图形的属性又可通过数量关系的研究,使得图形的性质更丰富、更精准、更深刻。这种“数”与“形”的相互转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可大大开拓我们的解题思路。可以这样说,数形结合不仅是探求思路的“慧眼”,而且是深化思维的有力“杠杆”。

  由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识。因此,数形结合的思想的使用往往偏重于由“数”到“形”的转化。

  在高考中,选择题和填空题这两种题型的特点(只需写出结果而无需写出过程),为考查数形结合的思想提供了方便,能突出考查考生将复杂的数量关系问题转化为直观的几何图形问题来解决的意识。而在解答题中,考虑到推理论证的严谨性,对数量关系问题的研究仍突出代数的方法而不是提倡使用几何的方法,解答题中对数形结合的思想的考查以由“数”到“形”的转化为主。

  3、分类与整合的思想

  解题时,我们常常遇到这样一种情况,解到某一步之后,不能再以统一方法,统一的式子继续进行了,因为这时被研究的问题包含了多种情况,这就必须在条件所给出的总区域内,正确划分若干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,还必须把它们总合在一起,因为我们研究的毕竟是这个问题的全体,这就是分类与整合的思想。有分有合,先分后合,不仅是分类与整合的思想解决问题的主要过程,也是这种思想方法的本质属性。

  高考将分类与整合的思想放在比较重要的位置,并以解答题为主进行考查,考查时要求考生理解什么样的问题需要分类研究,为什么要分类,如何分类以及分类后如何研究与最后如何整合。特别注意引起分类的原因,我们必须相当熟悉,有些概念就是分类定义的,如绝对值的概念、整数分为奇数偶数等,有些运算法则和公式是分类给出的,例如等比数列的求和公式就分为q=1和q≠1两种情况,对数函数的单调性就分为a>1,0

  高考对分类与整合的思想的考查往往集中在含有参数的'解析式,包括函数问题,数列问题和解析几何问题等。此外,排列组合的问题,概率统计的问题也考查分类与整合的思想。随着新课程高考在全国的实施,在新增内容中考查分类与整合的思想,窃以为,是今后几年高考命题的重点之一。

  4、化归与转化的思想

  将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题的思想叫做化归与转化的思想。化归与转化思想的实质是揭示联系,实现转化。

  除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。从这个意义上讲,解决数学问题就是从未知向已知转化的过程。化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。数学中的转化比比皆是,如未知向已知转达化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,函数与方程的转化等,都是转化思想的体现。

  转化有等价转化和非等价转化。等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。

  熟练、扎实地掌握基础知识、基本技能和基本方法是骒转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。有人认为“抓基础,重转化”是学好中学数学的金钥匙,说的也不无道理。

  5、特殊与一般的思想

  由特殊到一般,由一般到特殊,是人们认识世界的基本方法之一。数学研究也不例外,由特殊到一般,由一般到特殊的研究数学问题的基本认识过程,就是数学研究中的特殊与一般的思想。

  我们对公式、定理、法则的学习往往都是从特殊开始,通过总结归纳得出来的,证明后,又使用它们来解决相关的数学问题。在数学中经常使用的归纳法,演绎法就是特殊与一般的思想的集中体现。分析历年的高考试题,考查特殊与一般的思想的题比比皆是,有的考查利用一般归纳法进行猜想,有的通过构造特殊函数、特殊数列,寻找特殊点,确定特殊位置,利用特殊值、特殊方程等,研究解决一般问题、抽象问题、运动变化的问题等。随着新教材的全面推广,高考以新增内容为素材,突出考查特殊与一般的思想必然成为今后命题改革的方向。

  6、有限与无限的思想

  有限与无限并不是一新东西,虽然我们开始学习的数学都是有限的教学,但其中也包含有无限的成分,只不过没有进行深入的研究。在学习有关数及其运算的过程中,对自然数、整数、有理数、实数、复数的学习都是有限个数的运算,但实际上各数集内元素的个数都是无限的。在解析几何中,还学习过抛物线的渐近线,已经开始有极限的思想体现在其中。数列的极限和函数的极限集中体现了有限与无限的思想。使用极限的思想解决数学问题,比较明显的是立体几何中求球的体积和表面积,采用无限分割的方法来解决,实际上是先进行有限次分割,然后再求和求极限,这是典型的有限与无限的思想的应用。

  函数是对运动变化的动态事物的描述,体现了变量数学在研究客观事物中的重要作用。导数是对事物变化快慢的一种描述,并由此可进一步处理和解决函数的增减、极大、极小、最大、最小等实际问题,是研究客观事物变化率和最优化问题的有力工具。

  高考中对有限与无限的思想的考查才刚刚起步并且往往是在考查其他数学思想和方法的过程中同时考查有限与无限思想。例如,在使用由特殊到一般的归纳思维时,含有有限与无限的思想;在使用数学归纳法证明时,解决的是无限的问题,体现的是有限与无限的思想,等等。随着对新增内容的考查的逐步深入,必将加强对有限与无限的思想的考查,设计出突出体现出有限与无限的思想的新颖试题。

  7、或然与必然的思想

  随机现象有两个最基本的特征,一是结果的随机性,即重复同样的试验,所得到的结果并不相同,以至于在试验之前不能预料试验的结果;二是频率的稳定性,即在大量重复试验中,每个试验结果发生的频率“稳定”在一个常数附近。了解一个随机现象就要知道这个随机现象中所有可能出现的结果,知道每个结果出现的概率,知道这两点就说对这个随机现象研究清楚了。概率研究的是随机现象,研究的过程是在“偶然”中寻找“必然”,然后再用“必然”的规律去解决“偶然”的问题,这其中所体现的数学思想就是或然与必然的思想。

  随着新教材的推广,高考中对概率内容的考查已放在了重要的位置。通过对等可能性事件的概率,互斥事件有一个发生的概率、相互独立事件同时发生的概率、n次独立重复试验恰相好有k次发生的概率、随机事件的分布列与数学期望等重点内容的考查,考查基本概念和基本方法,考查在解决实际应用问题中或然与必然的辩证关系。

  概率问题,无论属于哪一种类型,所研究的都是随机事件中“或然”与“必然”的辩证关系,在“或然”中寻找“必然”的规律。

的数学思想方法12

  中图分类号:G623.5 文献标识码:A 文章编号:1674-098X(20xx)05(c)-0118-01

  数学思想是数学内容的进一步提炼和概括,是以数学内容为载体的对数学内容的一种本质认识,它是隐性的知识。数学方法是处理问题的方式、手段,也是通过数学内容才能反映出来。数学思想方法是人们探索数学真理过程中逐步积累起来的,蕴含于概念形成、定理公式推导及运用、问题解决过程之中。掌握好数学思想方法能帮助中学生树立科学的思维方式,有利于培养正确的数学观,对培养学生的创造性思维能力具有十分重大的作用。所以教师应持之以恒将渗透数学思想方法贯穿于日常的教学活动中。该文就中学数学思想方法教学途径谈几点看法。

  1 在数学概念教学中渗透数学思想方法

  数学概念是现实世界中空间形式和数量关系及其特有的属性在思维中的反映。数学概念的形成过程实际上也是数学思想方法的形成过程。因此概念的形成、结论的推导、方法的思考、规律的揭示以及问题的发现等过程,都是向学生渗透数学思想方法的主战场。教材中的概念、定理、性质、法则、公式等都是以结论的形式呈现出来,这就需要教师吃透教材,在教学中有计划有步骤地传达不同的数学思想方法。使概念教学不是简单给出定义了事,而是让学生经历、体验概念产生的`生动过程,引导学生揭示隐藏于概念之中的思维内核和思想方法。如在“指数对数函数”教学中,通过观察函数图像来确定函数的性质,揭示了数形结合思想。又如在乘方概念的教学中,通过类比的思想方法建立新旧知识之间的桥梁,可知乘方是乘法的特殊化,而乘法是加法的特殊化,减法可划归为加法。使学生对五种运算有了本质深入的理解,进一步完善了学生的知识结构体系。

  2 在解决问题时渗透数学思想方法

  我们知道问题是数学的心脏,它是数学活动得以进行的载体。而数学问题的解决过程实质上是命题的不断转换和数学思想方法反复运用的过程。所以问题解决一刻也离不开数学思想指导。教学中,教师常会碰到这样的情况:学生掌握了全部知识,也知道解决问题的方法,不过仍不知如何求解,稍微启发指点又恍然大悟,其原因:一是学生掌握的知识结构性差,组织混乱,运用的时候不得要领;二是解决问题时不能激活认知结构中的数学思想方法。因此,教师在问题解决教学中适时激活数学思想和数学方法,可有效激发他们的学习激情,变被动接受为主动参与。不断在数学思想方法指导下,弄清每个结论的因果关系,引导学生归纳得出结论。使他们感受到科学研究的曲折与艰辛,体会产生数学灵感的心理氛围,体验成功后的喜悦。如在解决“不能过河的情况下,怎样测量河流的宽度”

  这个问题中,涉及转化的思想、方程的思想、数形结合的思想、分类讨论的思想及数学模型方法,从而使学生体会到数学思想方法的综合运用,领略到数学思想方法的魅力和应用。

  3 在总结复习中深化数学思想方法

  总结与复习是揭示知识之间的内在联系以及归纳、提炼知识中蕴含的数学思想方法的途径之一。数学思想方法蕴含于数学基础知识之中,并且零散地分布在数学知识之中,它是隐性的,抽象的。通过平时的数学思想方法的渗透教学,学生积累了许多数学思想方法,但他们对数学思想方法的认识还是较肤浅的,有的甚至是零碎的,所以在小节复习中,适时地对某种数学思想方法进行概括和强化,它的内容、规律、运用等有意识地点拨,使学生从数学思想方法的高度掌握知识的本质,逐步体会数学思想方法的精神实质。例如,函数图象变换的复习中,把简单的二次函数、反函数、正弦函数等知识通过平移、伸缩、对称变换等引导学生运用简化曲线间的关系处理求相关动点轨迹的方法,得出图象变换的一般结论,以此深化学生对图象变换的认识,提高学生解决问题的能力及观点。又如,在四边形的复习教学中,引导学生思考:某数学思想方法在什么图形进行渗透和揭示?平行四边形等图形可进行哪些数学思想方法的应用?在纵横两方面整理出数学思想方法,从而概括数学思想方法。或者经常开设专题讲座课,讲清数学思想方法形成的来龙去脉、内涵外延、作用功能等等,以上方法都可以帮助学生更好地掌握数学思想方法。

  数学教材将数学思想方法融于数学知识体系中,即使是同一种数学思想方法在不同章节中要求的层次也是不同的,教师应将这些思想由潜形态转变为显形态,搞清常用的数学思想方法通常应在哪些场合下应用,如何使用,使用时注意些什么问题等。使学生由对方法的朦胧感受、死记硬背转化为明晰的理解、掌握和灵活运用,最终完成对数学知识、数学方法的本质认识。数学思想方法教学还应与知识教学、学生认知水平相适应,结合不同的知识教学有意识地反复孕育同一个数学思想方法,不要操之过急。要采取小步走、多层次的教学方法,围绕各种思想方法的基本要求,结合学生的心理特征,有计划地开展数学思想方法的训练,同时要让学生积极参与教学过程,在教师的启发引导下逐步形成、掌握数学思想方法。

  总之,学生数学思想的形成是一个迁移默化的过程,是在多次理解和应用的基础上形成的。需要教师精心设计教学,把握好教学过程,教学要反映数学发展规律,遵循思想方法的教学原则,深入挖掘教材中的思想方法,引导学生去体会、理解、掌握,使学生学会思考、分析、解决问题,形成良好的思维品质。那么这样的数学教学就是完美的,这样的教育就是成功的。

的数学思想方法13

  摘要:数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁。在教学中渗透数学思想和数学方法,是提高学生数学思维能力和数学素养的重要途径,也是培养创造型人才的需要。作为数学教师,应把数学思想和数学方法渗透在数育教学过程中。渗透“方法”了解“思想”,训练“方法”理解“思想”,掌握“方法”运用“思想”,提炼“方法”完善“思想”。

  关键词:数学思想,数学方法,数学教学

  所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性概括和认知。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。要全面提高学生的数学素质,形成创新思维能力,掌握科学的学习方法,就必须紧紧抓住数学思想和数学方法的教育和培养这一重要环节。

  按照人们认识事物的认知规律,由感性认识到理性认识,由感性的积累到理性的飞跃,才能形成一个完整的认知过程,从而在此基础上开始又一轮的更高程度的认知。数学学习也是这样,运用数学方法解决数学问题的过程,就是感性认识不断积累的过程。当感性认识量的积累达到一定程度时,就会产生理性认识质的飞跃,从而上升为数学思想。在数学教学中,我们也要遵守这样的认知规律,由方法的积累到思想的飞跃,而不能违背科学的认知规律。

  一、渗透“方法”,了解“思想”

  初中学生的数学知识还相对贫乏,抽象思维能力还有待于训练和提高。因此必须将数学知识作为载体,把数学思想和数学方法的'教学逐步渗透到数学知识的教学中。教师要把握好渗透的时机和渗透的程度,举一反三循序渐进。重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程。使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题的能力。忽视或压缩这些过程,一味向学生灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如初中数学七年级上册课本《有理数》这一章,与原来部编教材相比,它少了一节——“有理数大小的比较”,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比较大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了数形结合的思想,学生易于接受。

  二、训练“方法”,理解“思想”

  数学思想的内容是丰富多彩的,方法也有难易之别。因此,教师在渗透数学思想和数学方法的过程中,必须遵循循序渐进的原则,有重点有步骤地进行渗透和教学。教师要全面熟悉初中三个年级教材的编排体系、知识结构、能力层次、重点难点。认真钻研教学大纲,吃透教材,努力挖掘教材中进行数学思想和数学方法渗透的条件和因素。对数学知识从思想方法的角度进行认真分析、系统归纳、科学概括,形成全面完整的认知和梳理。同时要对三个年级不同学生的年龄特点、认知能力、接受能力、知识能力基础有一个全面而准确的了解和把握。由易到难、由浅入深、分阶段、分层次地进行数学思想和数学方法的渗透。

  如在教学同底数幂的乘法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,从而归纳出一般方法。在得出用a表示底数,用m、n表示指数的一般法则以后,再要求学生应用一般法则来指导具体的运算。在整个教学中,教师分层次地渗透了归纳和演绎的数学方法,对学生养成良好的思维习惯就会起到重要作用。

  三、掌握“方法”,运用“思想”

  数学知识的学习要经过听讲、复习、做习题等才能掌握和巩固。数学思想、方法的形成同样有一个循序渐进的过程。只有经过反复训练才能使学生真正领会。另外,使学生形成自觉运用数学思想方法的意识,必须建立起学生自我的“数学思想方法系统”,这更需要一个反复训练、不断完善的过程。比如,运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握。学习一次函数的时候,我们可以用乘法公式类比;在学习二次函数有关性质时,我们可以和一元二次方程的根与系数性质类比。通过多次重复性的演示,使学生真正理解、掌握类比的数学方法。

  四、提炼“方法”,完善“思想”

  教学中要适时恰当地对数学方法给予提炼和概括,让学生有明确的印象。由于数学思想、方法分散在各个不同部分,而同一问题又可以用不同的数学思想、方法来解决。因此,教师的概括、分析是十分重要的。

  教学中那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学。它不利于学生对所学知识的真正理解和掌握,使学生的知识水平能力水平难以提高;反之,如果单纯强调数学思想和方法,而忽略数学知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略深层知识的真谛。因此数学思想的教学应与整个数学知识的讲授融为一体。教师要正确处理知识和能力的关系,精心组织课堂教学,充分发挥学生的主体作用和教师的主导作用。坚持不懈地照着一个目标迈进,就一定能够实现教育教学的改革和创新,就一定能够完成素质教育的光荣任务。

的数学思想方法14

  随着素质教育的深入开展,数学思想方法作为数学素质教育的重要内容已引起教育界的普遍关注和高度重视。做为未来高中教师的初等教育系的学生肩负着基础教育的重任,所以更应具有创新意识和创新能力。那么,应当如何认识数学思想方法?数学思想方法与初等数学又有什么样的关系?在初等数学的教学中又如何体现和渗透数学思想方法?

  一、注重引导,抓住学习关键

  数学关键就在一个悟字,所谓悟,就是开窍,如何开窍,就要求讲师不要只讲题目的做法,而是包括,是怎么想到要这么做的,以引导学生去理解,去悟,对于初等数学,本人的看法是随便怎么做,因为初等数学的试题必然有解,必然是可以通过所给条件经过N多步骤推出来,不信可以试试,拿一道,先什么都不要管,只管把已知条件以全排列方式组合,以推出新的条件,再将所得条件组合,再推,直到最后推无可推,你会发现题目所求就在其中,甚至简单的可能是离最终结论还有N步,复杂的估计也就是最终结论了,所以以高考为目的的初等数学题目是不经做的,因为只要你做,就一定能做出来,而之所以很多学生觉得难,没处着笔,不知道改该怎么做,很大一部分是因为懒,不愿动笔,而只是呆看,简单的能看出来,复杂的是很难看出来的,如果说那种直接推导的办法太耗时间,那么只能说是因为不熟练,一旦题目做多了,思维形成了,差不多就可以一眼看出来,顶多推两步,就知道后面的怎么推了,从而省略了N多的分支,古往今来的题海战术不是没有依据的,熟能生巧,见得多了,做的多了,自然可以找到某种规律。

  二、要正确处理本课程的自身逻辑系统与相关课程的关系

  初数研究课在研究初等数学问题时,大多采用专题讨论的方法,都有一套完整的体系。如果过分强调自身完整的逻辑系统,容易导致不同学科、不同课程的内客及方法有很多重复和交叉。

  如数与初等数论中的`相关内容,解析式的恒等变形,方程、不等式的解法与证明,几何证题法与证题术排列、组合及数列的一些解题方法等。如果不处理好它们之间的关系,只是简单地追求各门课程自身体系的完整,既不利于学生整体数学思想的建立,又制约了他们数学综合运用能力的提高,同时占用了很多的课时,所以,对于相关课程中己作详尽讨论过的知识及理论,应作为工具来应用,避免一些不必要的重复。

  三、变被动式学习为主动式学习

  1.知识系统的探究

  初数研究课涉及大量的理论,教师讲、学生听的传统教学模式既占用课时多,又难以体现学生的主体性。因此对理论性较强的内容,教师可以先提出一些切题的问题作为一堂课的锲子,留待后面逐个解决。这些问题将整个教学内容串起来,起到提纲挚领的作用,使学生明确学习目标,集中学习资源(如本课程及相关课程的教村及参考书)有针对性地去探究问题,然后教师组织学生对探究的结果进行归纳整理,形成较完整的知识体系。当然一个问题的解诀并非探究的终结,在探究过程中教师与学生都可以提出一些新问题,延续学生探究的热情,在合作交流的民主和谐的氛围里,尽可能地让学生走向自由探究。

  2.解题方法的探究

  从学生的认知角度未说,解题过程是独立的发现、探索与积极思考的过程,这种探索过程中所形成的意识和思维,就是真正的创造与发现。应该说,解题教学是中学数学教学的主要任务之一,设置初数研究课程的目的之一,就是结合中学实际对解题作专门的训练。

  3.条件与结论的探究

  对一个问题的条件或结论进行探究是对问题深入研究的重要组成部分,也是初数研究课程中具有挑战性的任务之一,引导学生从不同角度、不同层面来看问题,对学生的发散思维及创造思维的培养,都能起到良好的推动作用。

  随着教学改革的深化,教学思想方法不仅要在理论上做研究探讨,更重要的是需要在实践中不断地创造与完善,才能使教学取得较好的效果。

的数学思想方法15

  一、积极研读数学教材,挖掘数学思想方法

  小学数学教师在进行备课的时候,不仅要将数学知识进行重点分析,并且还要对数学教材进行仔细钻研,创造性的将数学教材发展为挖掘数学思想方法的主要载体。在课前备课的时候,小学数学教师要多问自己几个为什么,并且将教材内容积极转变为自己的教学思想,比如在学习用数对确定位置的一课的时候,数学教材中所呈现出的都是符号化思想,数学教师要从教材出发,不被教学目标所局限,将数学思想方法进行明确,并且创造性的使用数学教材,让学生能够对数对有所认识,能够开发其数学思维。

  二、积极进行点拨,实现数学思想方法的应用

  (一)在探索知识发生中渗透数学思想方法

  一般而言,数学思想方法渗透在学生获得知识的整个过程之中,数学教师要积极引导学生对数学知识有所理解与掌握,让学生能够在观察、实验、分析中感受到知识背后所蕴含的思想内容,只有如此,才能让学生对内化知识充分掌握,才能从根本上提高其数学素养。比如在学习《重叠》一节的时候,教师可以对学生提出问题:小明在前面数是第3个人,从后面数也是第三个人,这个队伍中一共有多少人?在对学生进行引导之后,让学生根据教材中的范例画出相应的.集合图,并且根据学生所绘制的集合图深入讲解重叠的意义,让整个内容渗透集合思想。这样一来,学生对知识点的渗透不仅实现了对应思想以及数学结合思想,并且数学方法中所存在的符号化思想则会进一步深化学生对重叠问题的思考与认识。

  (二)在解题思路的探讨过程中融入渗透数学思想方法

  学生作为学习的主体,在整个学习过程中,教师作为引领者要引导学生积极参与其中,对所发现的问题进行解决。其中,在小学数学学习中,解题是一项非常重要的活动形式,学生在解题的过程中,不仅是数学思想方法体验的过程,并且也是加深数学思想方法的过程。比如在学习《圆的面积计算》中,小学数学教学可以积极转化教学思想,并在将圆的面积计算公式推算出之后,指导学生对阴影部分的面积进行思考,等到学生将问题思考结束之后,让学生对解题的思路进行明确,并且利用多媒体资料将阴影部分的三角形转移到上面,在经过多媒体技术的转移之后,帮助学生寻找到解题的方法,让学生能够对转化的思想有所认识。数学是一门逻辑性比较强的学科,其学习的目的是寻找解题思想,掌握解题策略,针对于此,教师要在整个教学过程中将最具有价值的数学思想方法呈现给学生。

  (三)加强对课堂知识的回顾,将数学思想方法进行概括

  从整体角度分析,在小学数学教学中,总结是极其重要的环节,总结的作用不仅可以将知识之间的联系进行归纳,并且还能够将其中所蕴含的思想方法进行提炼,所以,对小学数学知识进行总结,能够实现对知识的深化以及概括,是渗透数学思想方法的主要渠道。

  三、加强课后巩固练习,反思数学思想方法

  在小学数学中有意渗透不仅是学生获得思想方法的主要途径,并且也是学生在反思的过程中获取思想方法的来源。在整个教学过程中,教师要积极引导学生在学习过程中对自己的思维活动进行检查,并且对其中所存在的问题进行分析以及解决,这样一来,不仅巩固了知识技能,并且也在一定程度上渗透了数学思想方法。此外,教师在为学生作业进行检查的时候,也要对其进行点评,这样一来不仅可以让学生巩固所学到的知识,并且还能获得解题的技巧,能够帮助学生悟出其中所蕴含的数学规律以及数学思想方法。

  四、结语

  小学数学作为一门基础课程,决定了学生思维的开发,在小学数学中,渗透数学思想方法的内容非常多,本文从课前备课、课中指导到课后巩固三个方面出发,进一步分析了小学数学教学中渗透数学思想方法的策略。此外,在小学数学教学过程中,数学教师要不断努力,并且要对教学方法进行熟练掌握,指导学生进行学习与练习,只有如此,才能从根本上推动我国教育事业的可持续发展。

【的数学思想方】相关文章:

方特之旅作文12-08

郑州方特作文12-07

方特之旅作文【推荐】12-09

方特之旅作文[精品15篇]12-09

郑州方特作文通用【13篇】12-08

方特之旅作文(集锦15篇)12-09

郑州方特作文锦集【13篇】12-08

数学故事12-12

数学作文12-10

[推荐]数学的作文12-01